SPECIAL PROVISIONS FOR TRAFFIC SIGNALIZATION Linn County STP-A-922-0(24)--86-57 Effective Date February 16, 2010 THE IOWA DEPARTMENT OF TRANSPORTATION STANDARD SPECIFICATIONS, SERIES OF 2009, ARE AMENDED BY THE FOLLOWING MODIFICATIONS. THESE ARE SPECIAL PROVISIONS AND SHALL PREVAIL OVER THOSE PUBLISHED IN THE STANDARD SPECIFICATIONS. # TABLE OF CONTENTS I GENERAL REQUIREMENTS - 1.1 RELATED SPECIFICATIONS AND STANDARDS - 1.2 LOCAL REQUIREMENTS - 1.3 CONTRACTOR'S RESPONSIBILITY - 1.4 TRAFFIC CONTROL - 1.5 ORDER OF WORK - 1.6 SALVAGE - 1.7 UTILITIES - 1.8 EQUIPMENT AND MATERIALS - 1.9 MEASUREMENT AND PAYMENT - 1.10 FIBER OPTIC CABLE #### II MATERIAL REQUIREMENTS - 2.1 ELECTRICAL - 2.2 CONDUIT - 2.3 GROUND RODS AND GROUND WIRE - 2.4 CONCRETE BASES FOR POLES AND CONTROLLERS #### **III INSTALLATION REQUIREMENTS** - 3.1 GENERAL - 3.2 CONCRETE BASES FOR POLES, CONTROLLERS, AND BATTERY BACK-UP - 3.3 HANDHOLES - 3.4 CONDUIT - 3.5 ELECTRICAL - 3.6 POLE ERECTION - 3.7 LOOP DETECTORS - 3.8 SIGNALS - 3.9 CONTROLLER CABINET - 3.10 EQUIPMENT TESTING - 3.11 FIBER OPTIC CABLE - 3.12 BATTERY BACK-UP AND POWER SERVICE # IV <u>EQUIPMENT REQUIREMENTS</u> - 4.1 TRAFFIC ACTUATED TRAFFIC SIGNAL CONTROLLERS - 4.2 MULTIPHASE TRAFFIC ACTUATED CONTROLLERS - 4.3 INDUCTIVE LOOP VEHICLE DETECTOR - 4.4 MAST ARM ASSEMBLIES - 4.5 SIGNAL HEADS - 4.6 TRAFFIC SIGNAL LAMPS - 4.7 BACKPLATES - 4.8 ALUMINUM TRAFFIC SIGNAL PEDESTAL - 4.9 PEDESTRIAN PUSH BUTTON DETECTORS - 4.10 VIDEO DETECTION SYSTEM - 4.11 WIRELESS VEHICLE DETECTION SYSTEM - 4.12 ETHERNET COMMUNICATION SYSTEM - 4.13 BATTERY BACK-UP - 4.14 FIBER OPTIC DATA HUB CABINET - 4.15 PAN, TILT, ZOOM (PTZ) CAMERA #### PART I GENERAL REQUIREMENTS This part consists of the general provisions necessary when furnishing traffic signal equipment complete, in place and operational as described in the project plans and these special provisions. #### 1.1 RELATED SPECIFICATIONS AND STANDARDS Unless otherwise specified in the project plans and special provisions the traffic signal equipment installed under this specification shall comply with: - A. Specifications of the Underwriters Laboratories Inc. - B. National Electrical Code. - C. Manual on Uniform Traffic Control Devices (MUTCD). #### 1.2 LOCAL REQUIREMENTS Local requirements such as requiring the Contractor to be a licensed electrical contractor in accordance with Cedar Rapids City Ordinance and adherence to local Building Code shall be met. #### 1.3 CONTRACTOR'S RESPONSIBILITY - A. The Contractor will be responsible for incidental sidewalk removal and replacement necessary to complete the signal equipment construction. All waste material and debris shall be disposed of at a sanitary landfill at no expense to the Contracting Authority. - B. All work included under this contract shall be done in accordance with the Occupational Safety and Health Act of 1970 (Williams Steiger Act) as amended and enforced by the governmental authority responsible for the enforcement of the Act. Enforcement and responsibility for fulfilling this provision of the specifications shall rest solely with the Contractor, their superintendents, and their foremen and in no way shall rest with the Contracting Authority or the Engineer. The presence of the Engineer, the Contracting Authority, or their representatives shall not obligate the Engineer, Contracting Authority, or their representatives to the Contractor's responsibilities. The Contractor shall inform their subcontractors to this also. # 1.4 TRAFFIC CONTROL - A. Through traffic shall be maintained at all times. - B. Existing traffic signal installations shall be kept in effective operation, if required, except for shutdown to allow for alterations. The Contractor shall notify the local traffic enforcement agencies prior to any operational shutdown of a traffic signal installation. Any and all operational shutdowns will be coordinated with the Traffic Engineering Division, and the Contractor may be required to provide temporary electrical service, and it will be considered incidental. The Contractor shall schedule their work such that not more than one intersection at a time is operationally shut down. - C. The Contractor shall be responsible for appropriate traffic control, which may include flaggers, off duty police officers, or other traffic control as specified by the Traffic Engineering Division. #### 1.5 ORDER OF WORK A. The order of work shall be determined by the Contractor, subject to the approval of the Engineer. #### 1.6 SALVAGE A. The Contractor shall deliver all salvaged materials to the Cedar Rapids Traffic Engineering Division, 1825 Edgewood Road SW, Cedar Rapids, Iowa, unless otherwise specified in the plans. # 1.7 UTILITIES - A. The location of all utilities indicated on the plans is approximate only. The Contractor must determine the exact location and elevation of all public utilities. It shall be the duty of the Contractor to ascertain whether any additional facilities other than those shown on the plans may be present. - B. The Contractor shall replace or repair any existing utilities damaged by their operations at their own expense. #### 1.8 EQUIPMENT AND MATERIALS - A. Equipment and materials shall be of new stock unless the plans provide for the use of existing equipment, or equipment furnished by others. New equipment and materials shall be the product of reputable manufacturers of electrical equipment and shall meet the approval of the Engineer. - B. Before beginning work on the project, the Contractor shall submit six copies of catalog cuts for all equipment and materials supplied by the Contractor. - C. Prior to ordering any materials the Contractor shall provide certification from the manufacturers of all electrical equipment, conduit, and cable stating said material complies with the specifications. - D. All miscellaneous electrical equipment shall be UL approved. # 1.9 MEASUREMENT AND PAYMENT # A. Method of Measurement - 1. BATTERY BACKUP SYSTEM: The number of battery backup systems shall be counted by the Engineer. - 2. HH, POLY, 24x36: The number of 24 inch x 36 inch handholes or junction boxes installed shall be counted by the Engineer. - 3. HH, POLY, 24 36x48: The number of 24" 36 inch x 48 inch handholes or junction boxes installed shall be counted by the Engineer. - 4. VIDEO DETECTION SYSTEM: Video detection system as indicated on the plans, complete in place and accepted, will be measured as a unit - lump sum quantity for all work necessary. - 5. FIBER OPTIC CABLE TERMINATIONS: The number of fiber optic cable terminations shall be counted by the Engineer. - 6. SIGNAL CONTROLLER CABINET: The number of signal controller cabinets installed shall be counted by the Engineer. - 7. CONC CONTROLLER BASE W/ RISER: The number of concrete controller bases with risers installed shall be counted by the Engineer. - 8. HUB CABINET W/BASE: The number of hub cabinets with bases installed shall be counted by the Engineer. - FIBER OPTIC FUSION SPLICE: The number of fiber optic fusion splices, as indicated on the plans, complete in place and accepted, shall be measured by the Engineer. - SWITCH, ETHERNET EDGE: The number of Ethernet edge switches, as indicated on the plans, complete in place and accepted, shall be measured by the Engineer. #### 11. SIGNAL CABINET RISER - SWITCH, MANAGED: The number of Ethernet edge switches, as indicated on the plans, complete in place and accepted, shall be measured by the Engineer. - 12. SIGNAL CABINET MODIFICATION: The number of signal cabinet modifications, as indicated on the plans, installed shall be counted by the Engineer. - 13. HH, CONC, 24: The number of 24 inch concrete handholes or junction boxes installed shall be counted by the Engineer. - 14. SIGNAL CONTROLLER: The number of signal controllers installed, as indicated on the plans, complete in place and accepted, shall be counted by the Engineer. - 15. LOOP, WIRELESS: The number of wireless loops installed, as indicated on the plans, complete in place and accepted, shall be counted by the Engineer. - 16. WIRELESS REPEATER: The number of wireless repeaters installed, as indicated on the plans, complete in place and accepted, shall be counted by the Engineer. - 17. WIRELESS RECEIVER ACCESS POINT: The number of wireless receivers installed, as indicated on the plans, complete in place and accepted, shall be counted by the Engineer. #### 17. VIDEO DETECTION 18. PAN TILT ZOOM VIDEO CAMERA: The number of pan tilt zoom video cameras, as indicated on the plans, complete in place and accepted, shall be counted by the Engineer. - 19. PAN TILT ZOOM VIDEO CAMERA TRUSS INSTALL: The number of pan tilt zoom video camera truss installed, as indicated on the plans, complete in place and accepted, shall be counted by the Engineer. - 20. PEDESTRIAN PUSHBUTTONS: The number of pedestrian pushbuttons including signs, as indicated on the plans, complete in place and accepted, shall be counted by the Engineer. - 21. PEDESTRIAN INDICATIONS: The number of pedestrian signal heads, as indicated on the plans, complete in place and accepted, shall be counted by the Engineer. - 22. TORPEDO TUBES: The number of torpedo tubes, as indicated on the plans, complete in place and accepted, shall be counted by the Engineer. - 23. CONDUIT, 2 INCH HDPE, BORED: The Engineer shall measure the number of linear feet of 2 inch HDPE installed (by either boring or trenching) from center of handhole or cabinet to center of handhole or cabinet. - 24. CONDUIT, 6 INCH HDPE, BORED: The Engineer shall measure the number of linear feet of 6 inch HDPE installed from edge to edge of railroad ROW. - 25. CONDUIT, 4 INCH PVC, BORED: The Engineer shall measure the number of linear feet of 4 inch RSC installed (by either boring or trenching) from center of handhole or cabinet to center of handhole or cabinet. - 26. CONDUIT, 3 INCH PVC, TRENCH: The Engineer shall measure the number of linear feet of 3 inch PVC installed (by either boring or trenching) from center
of handhole or cabinet to center of handhole or cabinet. - 27. CONDUIT, 4 INCH RSC PVC, TRENCH: The Engineer shall measure the number of linear feet of 4 inch PVC installed (by either boring or trenching) from center of handhole or cabinet to center of handhole or cabinet. - 28. FIBER OPTIC CABLE, 144 SM: The Engineer shall measure the number of linear feet of 144 SM FIBER supplied and installed, including slack in handholes and cabinets. - 29. FIBER OPTIC CABLE, 48 SM: The Engineer shall measure the number of linear feet of 48 SM FIBER supplied and installed, including slack in handholes and cabinets. - 30. SIGNAL CABLE: The Engineer shall measure the number of linear feet of signal cable supplied and installed, including slack in handholes and cabinets. - 31. PEDESTRIAN REMOTE PUSHBUTTONS: The number of pedestrian remote pushbuttons including signs, as indicated on the plans, complete #### in place and accepted, shall be counted by the Engineer. #### B. Basis of Payment - BATTERY BACKUP SYSTEM: The price per each battery backup system shall be full compensation for, but not limited to, base, conduit, grounding, battery backup, excavation, fans, sealant, bushings, wiring, testing, and documentation, and all other labor, equipment, and materials necessary to complete the battery backup system in place and functioning. - 2. HH, POLY, 24x36: The price per each handhole or junction box installed shall be full compensation for supply and installation of the box, cut longitudinal 2 inch HDPE conduit or PVC or RSC if necessary, and supply and splice 2 inch HDPE or RSC conduit elbows and conduit extensions to each handhole and Junction Box, excavation, backfill, gravel drainage material, sealants, lids and covers, lid imprinting, cable hooks and racks, and all other labor, equipment, and materials necessary to complete the handholes or junction boxes in place. - 3. HH, POLY, 24 36x48: The price per each handhole or junction box installed shall be full compensation for supply and installation of the box, cut longitudinal 2 inch HDPE conduit or PVC or RSC if necessary, and supply and splice 2 inch HDPE or RSC conduit elbows and conduit extensions to each handhole and Junction Box, excavation, backfill, gravel drainage material, sealants, lids and covers, lid imprinting, cable hooks and racks, and all other labor, equipment, and materials necessary to complete the handholes or junction boxes in place. - 4. VIDEO DETECTION SYSTEM: The price per each video detection system shall be full compensation for supply and installation as indicated in the bid documents. - 5. FIBER OPTIC CABLE TERMINATIONS: The price per each termination shall be full compensation for terminating the fiber optic cables per the plans including, but not limited to, fanout kits, breakout kits, connectors, patch cords, mechanical terminations, heat cured or epoxy terminations, factory pigtails, couplers, trays, shrink tube, termination housing, and all other labor, equipment, and materials necessary for proper fiber termination. - 6. SIGNAL CONTROLLER CABINET: The price per signal controller cabinet shall be full compensation for, but not limited to, conduit, grounding, cabinet, excavation, fans, sealant, bushings, wiring, testing, and documentation, and all other labor, equipment, and materials necessary to complete the signal controller cabinet in place. - 7. CONC CONTROLLER BASE W/RISER: The price per concrete controller base with riser shall be full compensation for, but not limited to, riser, conduit, grounding, drilling holes, reinforcement, concrete, stone, finishing, excavation, testing, and documentation, and all other labor, equipment, and materials necessary to complete the concrete controller base with riser in place. - 8. HUB CABINET W/BASE: The price per hub cabinet with base shall be full compensation for, but not limited to, conduit, grounding, hub cabinet, base, excavation, fans, sealant, bushings, wiring, testing, and documentation, and all other labor, equipment, and materials necessary to complete the hub cabinet with base in place. - 9. FIBER OPTIC FUSION SPLICE: The price per each splice shall be full compensation for permanent fusion splices including, but not limited to, splice trays, splice enclosures, heat shrink tubing, buffer tubing, patch cords, automatic splicer device, termination splice quality testing and documentation, and all other labor, equipment, and materials necessary to complete the splices in place. - 10. SWITCH, ETHERNET EDGE: The price per each ethernet edge switch shall be full compensation for furnishing equipment complete in place and accepted, and shall include all other labor, equipment, and materials necessary to complete the Ethernet edge switch. - 11. SWITCH, MANAGED: The price per each managed switch shall be full compensation for furnishing equipment complete in place and accepted, and shall include all other labor, equipment, and materials necessary to complete the managed switch. #### 11.SIGNAL CABINET RISER - 12. SIGNAL CABINET MODIFICATION: The price per each signal cabinet modification shall be full compensation for supply and installation of C-MIC, any materials, conduit, elbows, extensions, sealants, drilling holes, and all other labor, equipment, and materials necessary to complete the signal cabinet modification as indicated on the plans. - 13. HH, CONC, 24: The price per each handhole or junction box installed shall be full compensation for supply and installation of the box, cut existing longitudinal 2 inch HDPE conduit or PVC or RSC if necessary, and supply and splice 2 inch HDPE conduit elbows and conduit extensions to each handhole and Junction Box, excavation, backfill, gravel drainage material, sealants, lids and covers, lid imprinting, cable hooks and racks, and all other labor, equipment, and materials necessary to complete the handholes or junction boxes in place. - 14. SIGNAL CONTROLLER: The price per each signal controller shall be full compensation for furnishing equipment, materials, and all other work necessary to provide a fully functioning traffic signal controller. - 15. LOOP, WIRELESS: The price per each wireless loop shall be full compensation for furnishing equipment, materials, and all other work necessary to provide a loop detector. - 16. WIRELESS REPEATER: The price per each wireless repeater shall be full compensation for furnishing equipment, materials, and all other work necessary to provide a wireless repeater. - 17. WIRELESS RECEIVER ACCESS POINT: The price per each wireless receiver shall be full compensation for furnishing equipment, materials, and all other work necessary to provide a wireless receiver. - 18. PAN TILT ZOOM VIDEO CAMERA: The price per each pan tilt zoom video camera shall be full compensation for furnishing equipment, camera supports, sealant, materials, and all other work necessary to provide a pan tilt zoom video camera. - 19. PAN TILT ZOOM VIDEO CAMERA TRUSS INSTALL: The price per each pan tilt zoom video camera truss install shall be full compensation for furnishing equipment, camera supports, sealant, materials, and all other work necessary to provide a pan tilt zoom video camera. - 20. PEDESTRIAN PUSHBUTTONS: The price per each pedestrian pushbutton shall be full compensation for furnishing equipment, materials, and all other work necessary to provide a pedestrian pushbutton. - 21. PEDESTRIAN INDICATIONS: The price per each pedestrian indication shall be full compensation for furnishing equipment, materials, and all other work necessary to provide a pedestrian indication. - 22. TORPEDO TUBES: The price per each torpedo tube shall be full compensation for providing the torpedo tube, trays, couplers, sealant, testing, and all labor, equipment, and materials necessary to complete in place. - 23. CONDUIT, 2 INCH HDPE, BORED: The price per linear foot shall be full compensation for boring or trenching (as specified) the 2 inch HDPE conduit, including supply and installation of the conduit, trenching/excavating for bore pits for conduit, backfilling, surface restoration, fittings, conduit supports, band clamps, conduit hangers, expansion fittings, epoxy resin, couplings, testing, and all other labor, equipment, and materials to complete the conduit per the plans. - 24. CONDUIT, 6 INCH HDPE, BORED: The price per linear foot shall be full compensation for boring the 6 inch HDPE conduit, including supply and installation of the conduit, trenching/excavating for bore pits for conduit, backfilling, surface restoration, fittings, conduit supports, fittings, epoxy resin, couplings, testing, and all other labor, equipment, and materials to complete the conduit per the plans. - 25. CONDUIT, 4 INCH PVC, BORED: The price per linear foot shall be full compensation for boring or trenching (as specified) the 4 inch RSC conduit, including supply and installation of the conduit, trenching/excavating for bore pits for conduit, backfilling, surface restoration, fittings, couplings, testing, and all other labor, equipment, and materials to complete the conduit per the plans. - 26. CONDUIT, 3 INCH PVC, TRENCH: The price per linear foot shall be full compensation for boring or trenching (as specified) the 3 inch PVC conduit, including supply and installation of the conduit, trenching/excavating for bore pits for conduit, backfilling, surface restoration, fittings, couplings, testing, and all other labor, equipment, and materials to complete the conduit per the plans. - 27. CONDUIT, 4 INCH RSC PVC, TRENCH: The price per linear foot shall be full compensation for boring or trenching (as specified) the 4 inch PVC conduit, including supply and installation of the conduit, trenching/excavating for bore pits for conduit, backfilling, surface restoration, fittings, couplings, testing, and all other labor, equipment, and materials to complete the conduit per the plans. - 28. FIBER OPTIC CABLE, 144 SM: The price per linear foot shall be full compensation for providing
fiber optic cable, testing the cable, temporary splices for testing, pulling equipment and lubricants, test documentation, installation, coiling and securing slack, and all other labor, equipment, and materials necessary to complete the fiber optic cable installation. - 29. FIBER OPTIC CABLE, 48 SM: The price per linear foot shall be full compensation for providing fiber optic cable, testing the cable, temporary splices for testing, pulling equipment and lubricants, test documentation, installation, coiling and securing slack, and all other labor, equipment, and materials necessary to complete the fiber optic cable installation. - 30. SIGNAL CABLE: The price per linear foot shall be full compensation for providing signal cable, testing the cable, pulling equipment and lubricants, installation, coiling and securing slack, and all other labor, equipment, and materials necessary to complete the signal cable installation. - 31. PEDESTRIAN REMOTE PUSHBUTTONS: The price per each pedestrian remote pushbutton shall be full compensation for furnishing equipment, materials, and all other work necessary to provide a complete and fully functioning pedestrian remote pushbutton. #### 1.10 FIBER OPTIC CABLE THIS WORK SHALL CONSIST OF INSTALLING A FIBER OPTIC CABLE OF THE TYPE, SIZE AND NUMBER OF FIBERS SPECIFIED. #### A. Contractor Qualifications Trained and experienced personnel shall supervise the fiber optic cable installation. As a minimum, the Contractor shall have at least five years experience in fiber optic cable installation, termination, and testing. Qualified technicians shall make the cable terminations and splices. The Contractor shall have at least one BICSI (Building Industry Consulting Services, International) registered technician on staff, in a supervisory position, and be available for reference and supervision of installation, termination, and testing of all equipment. The Contractor upon request of the Engineer shall provide documentation of qualifications and experience for fiber optic equipment installations. The Engineer shall determine if the Contractor is qualified to perform this work. The Contractor shall have attended a certified fiber optic training class mandated by these specifications prior to starting work. #### B. Codes Requirements The fiber optic cable installation shall be in accordance with or exceed all minimal requirements of State codes, National codes, and manufacturer codes as applicable. C. Miscellaneous Equipment The Contractor shall furnish and install all necessary miscellaneous connectors and equipment to make a complete and operating installation in accordance with the plans, standard sheets, standard specifications, special provisions, and accepted good practice of the industry. # D. Cables shall be supplied by City..... #### PART II MATERIAL REQUIREMENTS #### 2.1 ELECTRICAL - A. Service Conductor (Power Cable) shall be 600 volt, single conductor cable and shall comply with Article 4185.12 of the Standard Specifications and shall be U.L. listed for type "USE." The sheath shall be black for the positive cable and white for the negative cables. - B. Signal cable shall be stranded and conform to the requirements of IMSA 191 or 201, or latest revision thereof. The number and size of conductors shall be as specified on the plans. - C. Loop detector lead-in cable shall conform to the requirements of IMSA 502, latest revision thereof. - D. Detector loop wire shall conform to the requirements of IMSA 515, latest revision thereof. The encasing tube shall be polyvinyl chloride. - E. Connectors shall be insulated setscrew connectors. The setscrew connectors shall be Ideal, Series 30200; Holub, Catalog No. 10307, Model SS2 or approved equal. The Engineer prior to incorporation in the work shall approve connectors. - F. Tracer wire shall be a #10 AWG wire single conductor, stranded copper, Type THHN, with UL approval and orange colored jacket. - G. The 48 strand fiber optic cable shall be OFS Brand, Fortex DT Cable Model No. AT-3BE12YT-048-H. The 144 strand fiber optic cable shall be OFS Brand, Fortex DT Cable Model No. AT-3BE12YT-144-H. # 2.2 CONDUIT - A. Galvanized rigid steel conduit (RSC) where called for on the plans shall meet the requirements of ANSI Standard Specification C 80.1, latest revision. Conduit fittings shall conform to the requirements of ANSI Standard Specification C 80.4, latest revision. The number and size of conduits shall be as called for on the plans. - B. If called for in the Plans, PVC conduit shall be Schedule 80. The number and size of the conduits shall be as called for on the plans. Installation of ground wire in the conduit to complete the grounding system shall be incidental. - C. Unless otherwise specified all conduit used for the electrical system shall be galvanized rigid steel having the Underwriters Laboratories approval. Conduit shall be of standard lengths with each length bearing the UL approved label. - D. All fittings used with rigid steel conduit shall be galvanized steel. Fittings of aluminum or zinc alloys are not acceptable. - E. Conduit sizes are as shown on the plans. These are the minimum sizes permitted for the application, the Contractor may, at their own expense, substitute a larger size. - F. HDPE Conduit (Fiber Optic Interconnect) HDPE conduit shall be orange in color and conforming to ASTM F 2160. Conduit shall be Schedule 40 SDR 13.5 DR 9 and shall be made with Prime Resins for conduit. Conduit shall have stranded #10 AWG THHN tracer wire installed, incidental to installation of HDPE. Conduit fittings and couplings shall conform to the requirements of ASTM F 2176, latest revision. Couplings shall be e-loc type couplings. When connecting to risers, use double e-loc couplings. Conduit shall be tested in accordance with ASTM D 2122 "Standard Test Method for Determining Dimensions of Thermoplastic Pipe and Fittings". Minimum elongation at break shall be 400% when tested according to Test Method D638 "Standard Test Method for Tensile Properties of Plastics". The conduit and couplings shall not fail when tested at the low-temperature conditions of -4°F as specified in ASTM F 2160 and using the test apparatus as described in Test Method ASTM D 2444 "Test Method for Impact Resistance of Thermoplastic Pipe and Fittings by Means of a Tup (Falling Weight)". The manufacture of couplings shall be in accordance with good commercial practice, uniform in color and free of visual defects such as burns, cracks, holes, foreign materials or voids so as to produce fittings meeting the requirements of ASTM F 2176. The coupling/conduit joint shall not fail by leakage when subjected to sustained internal and sustained external pressure testing as noted in ASTM F 2176. The coupling/conduit joint assemblies shall comply with tensile loading requirements, and shall not fail by pullout when loaded to axial tensile load requirements as specified in ASTM F 2176. #### 2.3 GROUND RODS AND GROUND WIRE - A. Ground rods shall be high strength steel rods with chemically bonded copper coverings to provide high conductivity and to prevent electrolytic action. Rods shall be full length as shown on the plans and shall have a nominal diameter of five eighths inch unless otherwise specified. Ground rods shall conform to the requirements of IMSA specification No. 621956. Ground wires shall be connected to ground rods with one-piece nonferrous clamps which employ setscrews as tightening devices. Connections to ground rods need not be taped. - B. All ground wires shall be #6 AWG, bare, solid annealed copper wire unless otherwise specified on the plans. Each steel pole or pedestal shall be firmly connected to the ground rod provided, by means of the grounding terminal specified in these special provisions. Placing the ground wire under an anchor bolt nut, anchor bolt cover, or similar device will not be permitted. # 2.4 CONCRETE BASES FOR POLES AND CONTROLLERS A. Concrete for bases shall be Class "C" structural concrete, C4 mix. B. Reinforcement for bases shall meet the requirements of Section 2404 of the Standard Specifications. #### PART III INSTALLATION REQUIREMENTS #### 3.1 GENERAL - A. The Contractor shall be prepared to furnish, upon request from the Engineer, a sample for evaluation, of any item or material, which they propose to furnish for this project. - B. The installation of all traffic signal equipment will be as shown in the plans. Any modifications of the installation are subject to the approval of the Engineer. - C. Unless otherwise specified in these contract documents, the installation of all signal equipment shall be in accordance with the Traffic Signal Manual of IMSA. - D. The painted surface of any equipment damaged in shipping or installation shall be retouched or repainted in a manner satisfactory to the Engineer. #### 3.2 CONCRETE BASES FOR POLES, CONTROLLER, AND BATTERY BACK-UP - A. Concrete bases for poles, controllers, and battery back-up shall conform to the details shown on the plans. - B. Excavations for these bases shall be made in a neat and workmanlike manner. Whenever the excavation is irregular, forms shall be used to provide the proper dimensions of the foundations below grade. - C. The material for the forms shall be of sufficient thickness to prevent warping or other deflections from the specified pattern. The forms shall be set level and means shall be provided for holding them rigidly in place while the concrete is being deposited. When located in a continuous sidewalk area, the top of the pole bases shall be set flush with the sidewalk or pavement surface. - D. All reinforcing bars, conduits, ground rods, and anchor bolts shall be installed rigidly in place before concrete is deposited in the forms. - E. Anchor bolts for the signal poles and cabinets shall be set in place by means of a template constructed to space the anchor rods in accordance with the manufacturer's requirements. The top of the bolts shall not vary more than 1/4
inch. Bolt projections shall be provided per manufacturer's recommendations. The center of the template and the center of the concrete base shall coincide unless the Engineer shall direct otherwise. - F. The top of the base shall be finished level and the top edges shall be rounded with an edger having a radius of 1/2 inch. The exposed surface of the base shall have a wood floated surface finish. Exposed concrete surfaces shall be cured using white pigmented curing compound or plastic film meeting the requirements of Article 2403.11 of the Standard Specifications. - G. The bottom of the foundations and bases shall rest securely on firm undisturbed ground. Where the foundation or base cannot be constructed as shown on the plans because of an obstruction, the Contractor shall use other effective methods of supporting the pole as may be designated by the Engineer. - H. Concrete shall be vibrated with a high frequency vibrator after it is placed in the form to eliminate all voids. - I. After the foundation or base has been poured, absolutely no modification of any sort may be made. If the anchor bolts, conduit, or any part of the foundation or base is installed in an incorrect manner as determined by the Engineer, the entire foundation or base shall be removed and a new foundation or base installed. The Contractor shall bear all costs of replacing work deemed unsatisfactory by the Engineer. - J. Anchor bolts for poles where arms are to be perpendicular to the centerline of the street shall be installed so that a line through the center of one anchor bolt farthest from the curb and extended through the center of the adjacent anchor bolt closest to the curb will be perpendicular to the centerline of the street to within two degrees of arc unless otherwise specified. - K. Prior to setting poles, the anchor bolts shall be covered in such a manner as to protect them against damage and to protect the public from possible injury. - L. The Engineer prior to construction shall approve each base location. Base dimensions shown on the plans are minimum dimensions and based on stable soil conditions. Should extremely loose or sandy soil be encountered, the Contractor shall contact the Engineer for necessary base alterations. - M. Where shown on the plans, the contractor shall remove the top of existing mast arm footings, anchor bolts, and conduits to 36 inches below the existing top of curb or edge of pavement elevation. Waste materials shall be removed from the site and disposed in accordance with local regulations. Backfilling for the removal shall be performed with mechanical compaction equipment meeting the requirements for backfilling conduit. The upper 6 inches of the removal area, if outside the proposed pavement, shall be backfilled with black dirt. #### 3.3 HANDHOLES - A. Handholes shall be either built in place in an excavation made in a neat workmanlike manner or shall be a precast unit conforming to the requirements of the plans. - B. When the use of forms is required, they shall be set level and of sufficient thickness to prevent warping or other deflections from the specified pattern. A means shall be provided for holding them rigidly in place while the concrete is being placed. - C. The ends of all conduits leading into the handhole shall fit approximately 2 inches beyond the inside wall. A drain conforming to the dimensions shown on the plans shall be constructed in the bottom of the handhole unless otherwise specified. - D. Frames and covers for traffic signal handholes shall be made of cast iron conforming to the requirement of plans, and to the dimensions shown on the plans. Minimum weight of cover shall be 165 lbs. Lid shall have checkered top, with "TRAFFIC SIGNAL" legend and manufacturer's name on top. - E. When installed in sidewalk or pavement, top of handhole cover shall be set flush with the sidewalk or pavement surface. When installed in an earth shoulder away from the pavement edge, the top surface of the handhole shall be approximately one inch above the surface of ground. When constructed in unpaved driveways, the top surface of the handhole shall be approximately level with the surface of the driveway. - F. All conduit openings in the handholes shall be sealed with an approved sealing compound after the cables are in place. This compound shall be a readily workable soft plastic. It shall be workable at temperatures as low as 30 degrees F, and shall not melt or run at temperatures as high as 300 degrees F. - G. Precast polymer concrete handholes shall be stackable, have bolted covers, and be sized 24 inch X 36 inch X 30 inch depth or 36 inch X 48 inch X 30 inch, unless otherwise specified in the Plans. Enclosures, boxes and covers shall meet or exceed all test provisions of ANSI / SCTE 77 2007 ("Specification for Underground Enclosure Integrity") for Tier 15 applications and must be UL (Underwriter's Laboratory) labeled. Independent third party verification of UL labels must be affixed on the inside and outside of the enclosure for in the field verification. All components in an assembly (box & cover) are manufactured using matched surface tooling and must be monolithic in design. All covers are required to have a minimum coefficient of friction of 0.5 in accordance with ASTM C 1028 and the corresponding Tier level embossed on the top surface. The bottom shall be "open" unless otherwise specified in the Plans. The lid shall be imprinted with the legend "TRAFFIC SIGNAL" or "FIBER", as designated by the City as appropriate during the shop drawing review. A minimum of four cable hooks will be installed in each junction box to support cables. # 3.4 CONDUIT # A. INSTALLATION - 1. Conduit shall be placed as shown on the plans. - Conduit shall be installed without change in direction directly from one structure to another, unless approved by the Engineer. Change in direction may be allowed for physical restriction such as right-of-way restrictions, utilities, location of roadway slopes, retrofitting existing conduit stubs, and certain short sections of conduits. - 3. Change in direction of rigid steel conduit, when approved, shall be accomplished by bending the conduit uniformly to a radius, which will fit the location (minimum radius 6 times the internal diameter of the conduit), or by the use of standard bends or elbows. Sharp kinks in the conduit will not be permitted. - 4. Nipples shall be used to eliminate cutting and threading where short lengths of conduit are required. Where it is necessary to cut and thread steel conduit, exposed threads will be field galvanized. - All conduit and fittings shall be free from burrs and rough places. Standard manufactured elbows, nipples, tees, reducers, bends, couplings, union, etc. of the same materials and treatment as the straight conduit pipe shall be tightly connected to the conduit. - 6. All conduit ends shall be provided with a bushing to protect the cable from abrasion, except for open ends of conduit being placed for future use. Bushings shall have grounding fittings, which shall be connected to the grounding system by a #6 ground wire as contained in these specifications. - 7. All conduits placed for future use shall be plugged with a push penny cap and secured by electrical tape before backfill. - 8. All conduits shall drain, except for specific locations approved by the Engineer. Contractor will not be allowed to bend conduits upward to accomplish the conduit clearances shown on the handhole details. - 9. GPS and depth measurements will be taken immediately following conduit installation and provided to the Engineer. The measurements shall be taken 50 linear feet from every handhole and 200 linear foot intervals thereafter until the next handhole is reached. This work is incidental to the conduit installation. #### B. TRENCHING AND BACKFILLING - Secure written approval of the City Forester prior to any trenching or excavation within the drip line of any tree. - Trenches shall be excavated to such depth as necessary to provide 12 inch to 18 inch cover over the conduit. All cinders, broken concrete or other hard abrasive materials shall be removed and shall not be used for backfilling. The trench shall be free of such materials before the conduit is placed. No conduit shall be placed prior to inspection of the trench by the Engineer. - 3. All trenches shall be backfilled as soon as possible after installation of conduit. Backfill material shall be deposited in the trench in layers not to exceed 6 inches in depth and each layer shall be thoroughly compacted before the next layer is placed. Hard materials shall not be placed within 6 inches of the conduit. - 4. Whenever excavation is made across parkways, gravel driveways, or sodded areas, the sod, topsoil, crushed stone and gravel shall be replaced or restored as nearly as possible in its original position and the whole area involved shall be left in a neat and presentable condition. Concrete sidewalk pavements, and base courses and bituminous surfaces shall be replaced with new materials and the cost shall be incidental to the work. #### C. PUSHED OR BORED CONDUIT - When the term "pushed' or "bored" is used in the plans, it is intended that all conduits be placed without disturbing the existing surface. Such conduit shall be placed by jacking, pushing, boring or any other means necessary to place the conduit without cutting or removing pavement or disturbing existing surfaces except at the bore pit or push equipment location. - 2. Removal of pavement will require prior approval of the Traffic Engineering Division. Replacement of removed pavement will be done according to plan details and no additional payment will be made. - 3. Plan quantities for pushed conduit include at least two feet of pushed conduit behind each curb. - 4. The maximum conduit depth at handholes for all conduits, including pushed conduit, is as shown on the plans. Contractor must push their mole (without conduit) at least four
(4) times before consideration will be given to allowing an upward bend in the conduit. # 3.5 ELECTRICAL A. All conductor cable combinations shall be shown on the plans. No substitutions will be permitted. Each signal head shall be wired separately from the handhole compartment in the pole base to the signal head. B. The signal cable color codes shall be as follows: | Pedestrian Signals | | 5 Section Traffic Signals | | |--------------------|--------|---------------------------|--------| | Walk - | Green | Green Ball - | Green | | Don't Walk - | Red | Yellow Ball - | Orange | | Sig. Common - | White | Red Ball - | Red | | Pushbutton - | Black | Green Arrow - | Black | | PB Common - | Orange | Yellow Arrow - | W/BK | | | | Sig. Common - | White | | | | Spare - | Blue | #### 3 Section Traffic Signals Green Ball - Green Yellow Ball - Orange Red Ball - Red Sig. Common - White Spare - Black - E. One electrical splice in the handhole compartment of the pole base will be allowed for the signal circuit wiring. All signal circuit cable runs shall be one continuous length of cable from the connections made in the handhole compartment of the signal pole bases to the terminal compartment in the controller base. - F. Conductor groupings and splicing may be made in the terminal compartment in the controller cabinet. - G. The loop detector lead-in cable shall be one continuous length of cable from the terminal compartment of the controller cabinet to a splice made with the loop detector wires in the first handhole or pole base handhole compartment provided adjacent to the loop detector. - H. Cables shall be pulled through conduit by means of a cable grip designed to provide a firm hold upon the exterior covering of the cable or cables, with a minimum of dragging on the ground or pavement. This shall be accomplished by means of reels mounted on jacks or other suitable devices. Frame mounted pulleys or other suitable devices shall be used for pulling the cable out of conduits into handholes. Only vegetable lubricants may be used to facilitate the pulling of cable. - I. Each signal cable shall be identified with an identification tie in the controller cabinet, handholes, pole base handhole, pedestal handhole and at any splice or junction location. Identification ties shall be provided both on the cable from the controller and the cables leading to the heads for a splice in a pole base handhole. Ties shall be of an opaque nylon material arranged to include a marker board, nonreleasing holding device, and cable fastening tail markers. The marking board shall be not less than 3/8 inch wide by 3/4 inch long, and 25 mils thick, roughened on one side to hold indelible black nylon marking ink. Identification shall be permanent and waterproof. Once installed, the tie shall not be removable except by cutting it loose from the cable. Identification ties shall be marked as follows: i. Heads Head number, number of sections - ii. Loops Loop number, direction and location (stop lines, advance, or left turn loop) - iii. Push Button Location, street crossing - J. Cable slack shall be as follows: - Four (4) feet in handholes - Two (2) feet in signal bases - Two (2) feet in the terminal compartment of the controller base No additional slack will be allowed in the loop detector leadin cable after the initial splice. - K. Connectors shall be of the proper size for the number and size of the wires being connected. - L. Wire ends must be thoroughly cleaned after the insulation is stripped off to insure complete contact with another wire, or the connector. If strands are damaged when the insulation is removed, the section of the cable must be discarded. Nicked or damaged conductor strands will not be permitted inside of connectors. Loose wire ends shall not be used as "shims" to make a connection. - M. Electrical tape shall not be applied to the finished connections. Signal cable insulation shall extend beneath the insulated portion of the connector. The contractor shall redo any connection with exposed bare wire. - N. Covered connections must be arranged so that they will not be in contact with the metal poles. Connections in the poles shall be pointed up to prevent accumulation of moisture in the connection. - O. Loop detector splices shall be capable of satisfactory operations under continuous immersion in water. - P. Cable connections in signal heads and controller cabinets shall be made at the terminal blocks provided for this purpose. All stranded wires inserted under a binder head screw shall be equipped with a solderless pressure type spade connector with a preinsulated shank. All solid wire shall have an eye and shall not have a terminal connector. - Q. Service cable shall be continuous from the disconnect switch located on the service pole to the terminal compartment of the controller cabinet. - R. Interconnect cable shall be continuous from controller to controller. - S. A tracer wire shall be installed in all conduits with signal cables, detector lead-in cables, or communication cables. The tracer wire shall be identified in the controller cabinet, handholes, and poles by means of identification tags. The tracer wire shall be spliced in the handholes to form a continuous network. #### 3.6 POLE ERECTION A. All poles are to be erected vertically and securely bolted to the cast-in-place concrete foundations at the locations shown on the plans. - B. Leveling shall be accomplished by the use of nuts on each anchor bolt. One nut shall be turned on each anchor bolt and the pole placed in position on these nuts. The top nuts shall then be placed loosely and the pole adjusted to the vertical position by adjusting both the upper and lower nuts. - C. After the pole is securely fastened, install the metal strips in the area between the pole and the base. The metal strips will be supplied by the Traffic Engineering Division and the method of attachment shall be approved by the Traffic Engineering Division. - D. Each pole shall be grounded from the pole to the foundation ground rod by a No. 6 AWG bare copper ground wire. - E. Poles shall be placed so that modifications and/or attachments are correctly oriented, as indicated on the plans. - F. The foundations must be given seven days to cure before poles are erected. The center of the poles are to be set back from the curb, a distance shown on the plans. Poles shall be erected so that they are plumb with traffic signals installed, in line, and all the same relative height above the centerline of the street and with the mast arms correctly oriented as shown on the plans. - G. Poles must be erected so that they are plumb with traffic signal heads. The manufacturer recommendation for raking should be observed when setting the pole to assure that it is plumb when the load is applied. #### 3.7 LOOP DETECTORS - A. Loop detectors shall be installed in accordance with the plans. Adjustments in the locations shall be made to minimize the location of the loop wire across construction joints. Locations of the loops shall be subject to the approval of the Engineer. The cabinet end of the cable shall be clearly tagged identifying the loop. - B. The slot for the loop shall be constructed per plan. The slot shall be dry and completely clean of all loose debris and have a smooth bottom. Each change of direction, or crossing of pavement joint or crack, shall be drilled and loop slack provided. - C. Saw cuts and holes made in the roadway for installation of vehicle detectors shall be sealed with one-part detector loop sealant, such as Chemque 290S, Bondo 575 or equivalent, per manufacturer's instructions. - D. Each loop detector shall be connected to the controller with shielded cable. No splices will be allowed in this cable. No loops shall be connected in series, unless directed by the Engineer. - E. Upon completing the loop installation in the field cabinet and prior to sealing the loop in the pavement, the Contractor shall notify the Traffic Engineering Division who may meter the loops by test instruments capable of measuring electrical values of installed loop wires and leadins to measure induced AC voltage, inductance in microhenries, highlow "Q" indication, leakage resistance in megaohms, and the resistance of the conductors in ohms. An acceptable load installation shall be defined as follows: - Induced voltage test: No deflection on the pointer of a volt meter - Inductance: The inductance reading on the loop tester is approximately the calculated value or with approval of the Engineer is between 100 mh and 200 mh. - Loop Q: Deflection of the pointer to the upper side of the scale. - Leakage to Ground: Deflection of the pointer to above 100 mega ohms. - Loop Resistance: The resistance reading on an ohmmeter is approximately the calculated value. An unacceptable loop installation shall be defined as follows: - Inductance: The inductance reading is below 90 mh or above 250 mh. - Leakage to Ground: Deflection of the pointer is below 100 mega ohms. - Loop Resistance: The resistance reading is 50% more than calculated. #### 3.8 SIGNALS - A. All signal faces and indicators shall be installed as shown on the plans. Pole mounted signal heads and pedestrian push buttons are shown on the plans and schematic drawings in schematic form only. Pole mounted signal heads are generally intended to be mounted on the face of pole with respect to oncoming traffic. Modifications to this are required when the view of the pole mounted signal indication is blocked. (See Paragraph 3.8 E). Pedestrian push buttons shall be installed on the face of the pole in 90° increments with respect to the mast arm. The push button shall be located on the pole face so the arrow on the R104 sign directs pedestrians to the appropriate crosswalk. - B. All optically limited signal heads shall be properly masked to limit their field of view as directed by the Engineer. - C. Backplates shall be installed and properly secured for the traffic signal heads. -
D. All signal heads shall be kept securely covered until such time as the signals are put into operation. - E. The Engineer shall approve the location of signal heads in which the view of the indications is blocked or partially blocked by utility poles, trees or other physical obstructions. Standard heights and locations shown on the plans are typical for unobstructed locations. Signal heads installed without approval of the Engineer, which in the opinion of the Engineer are obstructed, shall be relocated at the Contractor's expense. Holes in the poles due to this signal relocation shall be plugged in a manner acceptable to the Engineer. # 3.9 CONTROLLER CABINET - A. The controller cabinet shall be mounted with the back of the cabinet toward the intersection such that the signal heads can be viewed while facing the controller. - B. All field wiring must be directly attached to the wiring lugs. Attachment of wiring shall be in a neat and workmanlike manner. - C. All conduit openings in the controller cabinet shall be sealed with an approved sealing compound. This compound shall be a readily workable at temperatures - as low as 30 degrees F and shall not melt or run at temperatures as high as 300 degrees F. - D. All wiring diagrams, service manuals, instructions for installing and maintaining the equipment and advice as to timing and operation shall be returned to the Traffic Engineering Division in good condition. - E. The Engineer or their representative shall inspect the installation before activation and shall be present at the time the controller is activated to assure that the controller is installed in accordance with the manufacturer's recommendations. # 3.10 EQUIPMENT TESTING - A. When the Contractor's work is complete and the project is open to normal traffic, the Contractor shall notify the Engineer in writing the date the signal will be ready for testing. - B. Initial traffic signal timings and timing adjustments will be provided and programmed by the Traffic Engineering Division. - C. Upon concurrence of the Engineer, the Contractor shall place any signal in operation for a consecutive 30 day test period. Any failure or malfunction of the equipment supplied or installation performed by the Contractor shall be corrected at the Contractor's expense and the signal tested for an additional 30 consecutive day period. This procedure shall be repeated until the signal equipment has operated satisfactorily for 30 consecutive days. - D. If the signal is to operate independently of other signals or signal systems, it shall be tested as a single installation. - E. If the signal is part of a system, the test period shall not be started until all signals in the system are ready to be tested. The system shall be tested as a unit. - F. The Contractor shall initiate correction of any failure malfunction of the signal installation within 24 hours of notification by the Traffic Engineering Division. The Traffic Engineering Division will correct any failure or malfunction of the signal installation not investigated by the Contractor within the above time period, and will deduct its expenses from the Contractor's final payment. #### 3.11 FIBER OPTIC CABLE INSTALLED IN DUCTS AND CONDUITS A. A suitable cable feeder guide shall be used between the cable reel and the face of the duct and conduit to protect the cable and guide it into the duct off the reel. It shall be carefully inspected for jacket defects. If defects are noticed, the pulling operation shall be stopped immediately and the Engineer notified. Precautions shall be taken during installation to prevent the cable from being "kinked" or "crushed". A pulling eye shall be attached to the cable and used to pull the cable through the duct and conduit system. A pulling swivel shall be used to eliminate twisting of the cable. As the cable is played off the reel into the cable feeder guide, it shall be sufficiently lubricated with a type of lubricant recommended by the cable manufacturer. Dynamometers or breakaway pulling swing shall be used to ensure that the pulling line tension does not exceed the installation tension value specified by the cable manufacturer. The mechanical stress placed on a cable during installation shall not be such that the cable is twisted or stretched. The pulling of cable shall be hand assisted at each controller cabinet. The cable shall not be crushed kinked or forced around a sharp corner. If a lubricant is used it shall be of water based type and approved by the cable manufacturer. Sufficient slack shall be left at each end of the cable to allow proper cable termination, minimum of 30 feet. This slack shall be in addition to installation slack as hereinafter specified. Additional slack cable shall be left in each hub cabinet, handhole, and at the top of each conduit riser. Excess slack at hub cabinets shall be re-pulled into the nearest handhole to provide a neat and orderly installation. The minimum slack amounts shall be as follows: Hub cabinet - 50 feet Fiber Handhole - 50 feet 100 feet - B. Storage of minimum slack cable in controller cabinets and additional slack at pull boxes shall be coiled. The slack coils shall be bound at a minimum of 3 points around the coil parameter and supported in their static storage positions. The binding material and installation shall not bind or kink the cable. Storage of additional slack cable adjacent to conduit risers and support poles shall be as visibly marked/tagged as "CAUTION FIBER OPTIC CABLE". Maximum length of cable pulling tensions shall not exceed the cable manufacturer's recommendations. Along with the fiber optic cable, one (1) #10 AWG THHN, 600 volt stranded conductor cable (tracer), orange in color, shall be pulled with 10 feet slack in each pull box, except where rigid metallic conduit or other metallic conductors are installed. - C. All fiber cables shall be marked with a metallic identifier in the handhole adjacent to the traffic signal cabinet or hub cabinet and on the cable in the traffic signal cabinet or hub cabinet at the point of termination. The identifier, both in the cabinet and in the handhole, shall indicate the direction the cable is going, cable contents [SM or SM/MM], and the abbreviated location for the other end destination. Fiber cabling between traffic controllers and adjacent hub locations shall be outdoor rated, loose tube fiber, when not linked by a direct, continuous conduit installation. #### MINIMUM BEND RADIUS D. For static storage, the cable shall not be bent at any location to less than ten times the diameter of the cable outside diameter or as recommended by the manufacturer. During installation, the cable shall not be bent at any location to less than twenty times the diameter of the cable outside diameter or as recommended by the manufacturer. #### AFTER THE FIBER OPTIC CABLE INSTALLATION E. Each section of the cable shall be tested for continuity and attenuation as a minimum. If the attenuation is found not to be within the acceptable nominal values, the Contractor shall use an optical time domain reflectometer (OTDR) to locate points of localized loss caused by bends or kinks. If this is not successful the Contractor shall replace the damaged section of cable with no additional payment. Splices will not be allowed to repair the damaged section. After all fiber cable is installed between traffic controller cabinets and fiber links between fiber distribution points (FDP) complete links, whether terminated or non terminated, shall be tested with an OTDR and a power meter. All fibers terminated shall be tested with a power meter. The Contractor may jumper termination points at controller cabinets to minimize the number of tests and run a single OTDR test between several controller cabinets, subject to the range of the OTDR. Links between FDPs shall be tested separately. Multimode fiber may be tested using 1300 nm and single mode may be tested at 1310 nM. The results of the OTDR test shall be provided on an electronic media (disk) and paper printout. The OTDR wave, pictorial diagram of dB loss over the length of fiber tested, shall be provided along with the measured data values. The printout shall contain the manufacturer's fiber optic Index of Refraction to the third decimal point for the fiber provided. The Contractor shall provide the Engineer with a written report showing all the values measured compared to the calculated values for length and coupler/connector losses at the completion of these tests. - F. Data documentation shall include for each test between cabinets or between FDP sites, the length of fiber as measured by OTDR, frequency used in test on OTDR by each fiber type, distance to each splice, termination or patch cord jumper, dB loss rating by manufacture from spool documentation, index of refraction by type of fiber in section, and the dB loss of each section as measured in the final test for each fiber. A special test shall be made on all continuous spliced fiber from start to end that includes the total dB loss measured and the OTDR plot on electronic disk. Outdoor patch cords between FDP and controller units less than 151 feet do not need be OTDR tested. - G. Documentation provided to the Engineer shall include a written indication of every splice, termination, patch cord, etc. for cable being measured. Power meter measurement recordings shall indicate the exact measured distance [OTDR or field measurement with cross reference for oscillation multiplier] on the sheet showing the power meter readings. Any deviations between fiber readings in the same tube shall be notated for OTDR graphs as well as deviations greater than 5% on power meter readings. Rated values for acceptable installation shall be based on the following parameters: Patch cords/Pigtails 0.60 MM & 0.15 SM dB each Unicam Terminations 1.0 dB set of 2 [In and Out] Splices 0.08 each 1 KM = 0.3077 KF where KF is 1000 feet H. Data documentation shall include for each test
between cabinets or between FDP sites, the length of fiber as measured by OTDR, frequency used in test on OTDR by each fiber type, distance to each splice, termination or patch cord jumper, dB loss rating by manufacture from spool documentation, index of refraction by type of fiber in section, and the dB loss of each section as measured in the final test for each fiber. A special test shall be made on all continuous spliced fiber from start to end that includes the total dB loss measured and the OTDR plot on electronic disk. Splice points shall be identified on the trace. #### CABLE TERMINATION I. Terminations shall be made using the method recommended by the connector manufacturer. All fibers shall utilize a fanout kit of the size and type recommended by the manufacturer and of the number of fibers provided in each fiber tube. All fibers terminated shall utilize a ceramic ferrule (outdoor connections), ST, mechanical termination equal to Siecor UniCam connectors, or be a wide temperature (40 to +170 degrees Fahrenheit) epoxy. Heat cured or epoxy type connections meeting the full temperature ratings are acceptable for this Project, including factory manufactured pigtails. The Contractor shall be required to provide proof of purchase of sufficient quantities of ceramic terminations for outdoor terminations to verify ceramic connector usage or temperature ratings on epoxy or heat cured processes prior to terminating any fibers. The Contractor may terminate fibers by splicing factory pigtails to the fiber ends and then connecting the pigtail to the fiber coupler in the fiber tray. When splicing pigtails to terminate, all splices shall be provided with the metal reinforced shrink tube protector. The contractor may terminate fibers by the use of UniCam mechanical termination connectors. All termination ST couplers shall be rated for dual fiber application, MM and SM. # **BREAKOUT KITS** J. The breakout kits or termination boxes used to terminate each fiber cable in the cabinet shall provide for the separation and protection of the individual fibers with the buffer tubing and jacketing materials. The termination housing shall be installed within a wall or shelf mountable interconnect housing which shall provide for storing fibers, ample room for feed through cable, strain relief for multiple cables within unit, and accommodate ST compatible connectors. All fiber pigtails shall be terminated through ST connectors on the wall or shelf mounted interconnect panel. All terminations shall be ST type, ceramic core (outdoor connections), and plug into the provided controller unit internal fiber optic modem. Acceptable enclosures for combination termination/splice points shall be MIC024 or WDC012 enclosures or preapproved equal. Splices to pigtail fiber, where used, shall utilize fan out kit protection to the fiber, heat shrink tubing with metal bar reinforcement and 900 micron rated pigtail insulation. Splices to factory pigtails shall use pigtails that are rated for a minimum temperature range of zero degrees to +150 degrees Fahrenheit. In the absence of pigtails meeting this temperature rating, fibers shall utilize loose tube fiber in fanout kit tubes and UniCam mechanical ST or epoxy approved connectors. These splices, fiber cable to pigtails, may be external to splice trays mounted internally to the enclosure, when shown on the wiring diagrams. All other splices, not specified to be installed external to the fiber splice tray, shall be installed in splice trays and be supported with heat shrink tubing. Acceptable splice trays include MIC024048 or 067 series or preapproved equal. #### **CONNECTORS** K. Connectors shall be mechanical ST (ceramic ferrule outdoor connections) compatible, field installable, and self aligning and centering or factory fabricated pigtails. Connectors to the special devices used for Ethernet network connections shall utilize a factory converter cable of SC to ST or manufacturer specified converter patch cord. Fiber optic equipment, used for terminating fibers, shall be rated for the type of connectors used. Connectors shall be Siecor CamLite, UniCam, or NEMA temperature rated epoxy type, or Engineer approved equal. #### **SPLICES** - L. The fiber cable shall be installed in continuous runs between cabinets. No splices shall be allowed, unless shown on the plans or for testing. For testing of unterminated fibers, only mechanical splices may be used. Mechanical splices shall: - i. Use a fiber optic mechanical splice connector including a single connector element operable for providing optical fiber alignment and strain relief includes opposed splice components that define first and second grooves for receiving the bare glass portions of mating optical fibers, as well as the coated or buffered portion of at least one of the optical fibers when the splice components are biased together by an actuator. - ii. The mating optical fibers are aligned while the coated or buffered portion of one of the optical fibers is retained within the same connector element, thus eliminating positioning problems that occur when separate connector elements are utilized for fiber alignment and strain relief. - iii. The splice components may be unbiased to allow removal of at least one of the mating optical fibers without destroying the connector assembly or potentially damaging the optical fibers. All other splices, where specified, shall be by fusion splice and shall be installed using an automatic fusion splicer. Splices between two fibers leaving the cabinet shall be supported in splice trays installed in splice enclosures. All splices shall be protected by heat shrink tubing designed for fiber optic splicing applications. Fibers being terminated in two separate termination/splice enclosures shall be supported between enclosures by the use of buffer tubing or approved equal support material or shall be pigtail patch cords. Termination / splice enclosures shall be separated by less than 12 inches unless a conduit is installed between enclosures. All splices shall be performed by an automated splicer device that verifies the final splice termination quality. All splices shall be nominally .03 to .05 dB loss but shall be less than a 0.08 dB loss. - i. The Contractor shall submit a splicing plan to the Engineer for review and approval. Approval of the splicing plan shall occur prior to any splicing of fiber optic cable. The Contractor's splicing plan shall include all information required to adequately depict splicing locations, breakout of buffer tubes, breakout of individual fibers, color coding, and splice tray layout. Splicing plan details should reference locations that are consistent with the locations defined elsewhere in the specifications and on the plans. - ii. The Contractor shall cut only the fibers to be terminated/spliced at designated locations. Unused fibers or fibers that are continuous through a splice location are to be coiled, labeled and left loose in the tray. - iii. All optical fiber splices including pigtail splicing at fiber distribution panel shall be fusion type splices utilizing heat shrink protection as opposed to bare fusion splices. Alignment shall be via fiber cores and not via fiber diameters. - iv. Fusion splicer shall use a light injection and detection system. - v. Secure each spliced fiber in a protective groove. Completely re-coat bare fibers with a protective room temperature vulcanizing (RTV) coating, gel or similar substance, prior to insertion in the groove, so as to protect the fiber from scoring, dirt or micro-bending. - vi. Termination splices shall join the fibers in the fiber optic cable span to the fibers in pigtails. The termination splices shall be placed in a splice tray and the splice tray(s) shall then be placed in the fiber distribution panel. The individual fibers shall be looped one full turn within the splice tray to avoid micro bending. A 2 inch minimum bend radius shall be maintained during installation and after placing in the splice tray. Each fiber shall be individually restrained in a splice tray. The optical fibers in buffer tubes and the placement of the optical fibers in the splice tray shall be such that there is no discernable tensile force on the optical fiber. #### LIGHT SOURCE M. An LED light source with a wavelength that is the system wavelength, 850 and 1300 nm for multimode and 1310 and 1550 nm for single mode, shall be used. The LED shall be stable within 0.1 dB in intensity over a time period sufficiently long to perform the measurement. The output of the LED shall overfill the input end of the launch fiber/cable in both numerical apertures (NA) and core diameter. The accuracy of the combined light source and power meter shall be less than .05 dB and be temperature compensated stabilized to 0.01 dB over the operating range of the meter(s). #### POWER METER N. The detector in the power meter shall have an effective numerical aperture and active region that is larger than the receive reference cable and/or the fiber under test. The power meter shall have a minimum range from +3 DBMS to –40 DBMS. The power meter shall have an accuracy of +/0.5 dB through the operating temperature and minimum resolution of 0.1 dB. #### LAUNCH REFERENCE ATTENUATOR - O. The launch attenuator, two each for single and multimode fiber testing, shall be utilized for all OTDR tests such that one launch cable shall be at the beginning of the fiber being tested and the second launch cable shall be on the end of the fiber being tested past the final connector. Only one launch cable shall be required when testing non-terminated fiber. The launch attenuator(s) shall be of the same fiber core size and type as the fiber under test. The attenuator shall emulate 300 hundred foot fiber length, minimum, for multimode and 900 feet length, minimum, for single mode fiber or as specified by the OTDR manufacturer for stabilization of the pulse generation. Launch cables shall be of
identical length for incoming and outgoing light during tests. ST connectors shall be utilized with each attenuator to connect the device to the test device, OTDR. One launce cable shall be installed on the start of the fiber being tested and one launch cable shall be installed on the end of each terminated to view the dB loss of the final connector. - Ρ. The OTDR shall have the Threshold Loss set at a value to show each splice or termination junction of a single fiber in each tube with out showing the extraneous noise caused by handhole coils or turns into the cabinets. This level is normally a value [Threshold Loss] between 0.3 and 0.8 on the OTDR. This trace shall be provided for one fiber in each tube tested and each "event" shall be marked as to splice, jumper or patch cord. The Threshold Loss shall then be set to a value of 0.25 for multimode fiber tests and to a value of 0.10 for single mode fiber tests. The test of each fiber installed shall be conducted and any recorded events above this threshold shall be identified, such as jumper or patch cord. Events that are in excess the provided values shall be corrected prior to documentation submittal, such as terminations in excess of the rated value or bends in the fiber at the point of a splice entering of leaving the splice tray (See Testing). For measured values recorded in excess of the above (0.25 MM and 0.10 SM) listed values, refer to the paragraph 12.2 specification as hereinbefore defined. The Engineer reserves the right to spot test fiber terminations, splices, or retesting of all fibers in a section to insure proper quality assurance both during and after installation and testing. Deviations from Engineer testing and report documentation shall be reviewed and the Contractor shall be able to retest any or all challenged measurements to verify a valid test. Inconsistent test results, in the sole opinion of the Engineer, shall be cause for the Contractor to retest the entire fiber installation. #### **TESTING** #### Q. General The Contractor shall provide all personnel, equipment, instrumentation and supplies necessary to perform all testing. All testing shall be performed in an accepted manner and in accordance with the testing equipment manufacturer's recommendations. All data shall be recorded and submitted to the Engineer as hereinbefore specified. The Engineer may perform or require supplemental testing at any time. The Contractor shall provide one copy of operating software to read and view all OTDR traces. #### R. Attenuation The end to end attenuation shall be measured for each fiber for each link after installation and termination. A patch cord jumper cable shall be connected to both the light source and the receive cable to the power meter by the use of a connector (barrel). The two reference cables shall then be connected via a termination coupler and the power meter "zeroed" to eliminate the line loss. This process results in a reading of the actual line loss (dB) of the input connector, fiber cable, exiting connector and any other splices or jumpers installed in the measured test link. The calculated "loss" shall not include the input or departing cables in the loss calculation. The calculated fiber loss measured shall list the number of terminations, including the input and departing connectors, the number of splices and the number of patch cords used to jumper the link(s) into the measured final link. The measured values for each terminated fiber in each tube shall include the Tube number, fiber number, number of feet in the link, the number of splices, the number of patch cords and the number of connectors, if any. The length of optical cable shall be as measured by the OTDR rather than the fiber cable jacket as the fiber is a reverse oscillation process resulting in a greater optical distance than the fiber cable jacket. The value for both the OTDR length and the cable jacket shall be provided in the recorded documentation for each link distance. All distances shall be recorded in feet rather than meters for both recorded lengths. S. Fibers that are not continuous from beginning of the link to the end of the link shall be noted in the documentation; otherwise, all fibers in a single tube may be listed with a single data entry for all required data listed above for all fibers in the tube. The fiber documentation for each fiber shall identify the fiber being tested by either fiber number or fiber coating color and be recorded by complete tube, for example Tube 1 through Tube 6, fiber 1 through fiber 12. The direction of the test shall be recorded for information purposes only to resolve discrepancies in replicating the test during inspections of the final installation. The power meter reading recordings shall log total dB loss over the length of the fiber measured, equivalent to a dB loss budget. - The output power levels at the network hardware transmitters and receivers shall be measured and recorded for system documentation. The power meter shall be connected to the transmitter side of the equipment with a system jumper. The transmit power level shall then be read and recorded - U. Each tube of a cable shall be in the same file divider where the tube cover OTDR page shows the overview of all splices, patch cords, terminations from start to end. The second section shall include all Power Meter readings and the mandated documentation to show the calculated line loss (losses). The third section shall contain all OTDR traces, one trace per screen. The fourth section shall include the spool sheet for the fiber installed on the test section. An "explanation" sheet may be included where required to clarify an unusual reading that is valid but difficult to be explained through traditional data presentation, such as a video feed fiber that is attached to a jumper to provide continuous feed from the start to end of the tube length where other fibers in the same tube are simply spliced. The above format shall be repeated for each tube of a cable. Traffic fiber measured in sections marked by traffic controller cabinets between Hub Sites may be subsectioned in an easy to understand format or may be jumpered using patch cords as a single OTDR Link with each section separated for power meter readings. # V. Continuity Continuity tests shall be used to determine whether a test or system jumper does or does not pass light. A continuity test shall also be used to assure the fibers have not been crossed over in the jumper and that the transmit fiber goes to the receiver fiber. The visible light tester shall be utilized to illuminate faulty terminations or fibers with excessive bends failing to pass light. W. To perform continuity test, a high intensity red light (Visible Fault Identifier) light source shall be aimed into the connector at one end, while an observer watches for a flicker of light at the other end. One each 650 nm red NFL light source shall be furnished to the Engineer by the Contractor on request during the testing of the fiber by the Contractor for spot testing. This device shall be made available during testing of continuity to the Engineer to assist in verifying fault locations and connector bleeding. #### **OTDR TESTING** X. An Optical Time Domain Reflectometer (OTDR) shall be used to evaluate the quality and length of cable reels prior to their use on the project. A minimum of one fiber per tube per reel shall be tested if payment for stored goods is requested. The fiber loss in dB/km and the length of each reel shall be recorded in the documentation. The maximum attenuation of the cable shall be as hereinbefore specified. A minimum of one fiber per tube per reel shall be tested if payment for stored goods is requested. The fiber loss in dB/km and the length of each reel shall be recorded in the documentation. The maximum attenuation of the cable shall be as hereinbefore specified. This test does not require an electronic document; but is provided to insure that the fiber has been received in useable quality without shipment damage. The test results of the Contractor OTDR tests of received spools shall be provided to the Engineer, in a minimum of hard copy print, prior to receiving payment for stored goods. Y. An Optical Time Domain Reflectometer (OTDR) shall be used to evaluate the quality and length of cable installed on the project. This test shall be conducted on all fibers, terminated and not terminated, and shall be conducted after all terminations on the fibers for a link have been completed. The fiber loss in dB/km and the length of each reel shall be recorded in the documentation. The index of refraction, minimum of three decimal points, provided by the manufacturer on the spool documentation shall be used for the test on the OTDR. The maximum attenuation of the cable shall be as hereinbefore specified. A hard copy of OTDR signature traces, electronically and in printed form, for all fiber links shall be made and provided in the documentation as specified. The data provided shall be in easy to understand format and of sufficient detail to verify the results. Fiber testing shall include only one fiber trace per graph. One copy of the operating system software to view the fiber graphs shall be provided with the final documentation. #### **DOCUMENTATION** Z. The result of all testing shall be recorded along with date of test, name of person performing test, brand name, model number, serial number of equipment used during test, and any other pertinent information and data. The Contractor shall be responsible to provide input to the Engineer reviewing the recorded data documentation to resolve all questions or data discrepancies. A copy of the evaluation calculation equations to be used may be obtained by the Contractor by request and by supplying a floppy disk. (The evaluation FO Calculator is an EXCEL program worksheet that calculates design dB Loss based on required inputs.) Documentation shall be considered incidental to
bid items and no additional compensation shall be provided. # **AERIAL FIBER** AA. Existing communications cable, installed as span wire installation, shall be utilized to relash the aerial fiber optic cable and shall not be removed unless shown on the Plans or approved by the Engineer in writing. Where existing infrastructure does not exist, the Contractor shall furnish and install new span wire messenger cable for lashing the fiber cable. Snap ties or cable ties for lashing shall not be permitted on this project. All costs incurred in removing. disposing or reusing the existing communications cable shall be considered incidental to the cost of installing the new fiber optic cable. BB. Installations, where all fiber optic cable is aerial before entering the controller. building or underground conduit system, shall be provided with a minimum of 100 feet coiled at the pole prior to going to the cabinet and one hundred feet coiled at the pole when exiting the cabinet. This one hundred foot section is in addition to the 20 feet minimum required for termination inside cabinets, buildings or other termination areas. Additional storage shall be required as specified on the Plans. #### CC. Overhead Enclosures The overhead shall be a six port enclosure capable of supporting a minimum of 48 fibers, loose buffer tubes, single fiber splices in trays of 12 splices each. The splice enclosure shall be fully waterproof, corrosion resistant, reentry capable and have gasketing for the entire length of the body as well as for each cable entry. The enclosure housing shall be sealed by the use of a permanent neoprene gasket and shall not require a flame to break the seal or to install. The cable entry section shall support a minimum of four ports of the size cable being installed, greater than 1/2 inch. Unused ports shall be sealed. Enclosures shall be stainless steel or ultraviolet stabilized black glass filled high density thermoplastic shell material. The enclosure shall be provided with built in shell stabilizers and air valve. The enclosure shall be provided with a heat shield to protect against extreme environment temperatures. The enclosure shall be provided with an adjustable aerial bracket mount and, where mounted inline, shall be provided with a vertical mount bracket. All aerial mount enclosures shall be provided with strength member brackets. The fibers shall be routed from the end plate to the splices trays using transition (transport) tubes. #### DD. **TORPEDO TUBES** Torpedo tube closures shall be engineered specifically for fiber optic applications. not modified copper closures. Closures shall provide fiber management hardware and a base-to-dome seal that is mechanical for ease of installation and re-entry. Cable seals shall use a heatshrink sleeve and hot-melt adhesive system that is installed with a hot-air gun. Fiber optic splice closures shall be approximately 21 inches long by 7 inches outside diameter. At a minimum, the closures shall have two large round ports for branch cable splices, and an oval port for two cables. The closure will hold four splice trays. Closures shall be designed for use with any cable construction loose buffer tube, central core tube, loose fiber, and ribbon, in any environment (aerial, pedestal, buried, handhole, and manhole), and for numerous splice applications (express, tap-off, branch, and repair). A. The Contractor shall supply and install a combination battery back-up electrical service with meter and lighting controller. Features must include transfer switch for generator power, lockable in use, metered disconnect for traffic signal, and unmetered disconnect for street lighting. Dedicated conduits shall connect the unit with the fiber hub cabinet, the adjacent signal pole base (for street lighting) and the designated quazite handhole (for traffic signal cabinet). The service pedestal shall be part of the continuously grounded system discussed in this specification. The power meter pedestal shall satisfy the requirements of the utility provider for the identified service classification. The battery back-up system and electrical service equipment shall be protected within a vandal-resistant and weather-proof cabinet. The transfers switch shall be double pole, manual switch, serving maximum 30 amps at 125V and generators up to 5500W. The housing shall be lockable with standard key, aluminum and rain tight. The inlet will be L14-30 and pilot light will be provided. The unit shall satisfy UL Standard 1008, NEC article 702 or its current form. #### PART IV EQUIPMENT REQUIREMENTS #### 4.1 TRAFFIC ACTUATED TRAFFIC SIGNAL CONTROLLERS A.1. PURPOSE. It is the purpose of Section A of these specifications to set forth minimum design and functional requirements for all actuated controllers included in this specification. Controllers shall be Eagle M50 series by Siemens, so as to be fully compatible and interchangeable with controllers on the City's existing ACTRA signal system and to support all features of the system including communication over Ethernet and fiber optic cable. #### A.6. SIGNAL CIRCUITS - A.6.1. GENERAL. The controller shall be provided with suitable load switches, external to the controller, for closing and opening signal light circuits. Such shall be sufficient in quantity to provide the interval sequence as described in Subsection A.4.2 of this specification. Solid state load switches will be required for solid state controllers. - A.6.2. CLOSING AND OPENING OF CIRCUITS/MINIMUM CAPACITY. The closing or opening of signal circuits shall be positive without objectionable dark intervals, flickering of lights, or conflicting signal indications. Each switch shall have a capacity of not less than 10 amperes of incandescent lamp load at 120 volts AC. - A.6.3. NEMA TRIPLE SIGNAL LOAD SWITCH(s). External jack mounted load switches shall be provided in accordance with Part 5, "Solid State Load Switches", Sec. TS 1 5.01, NEMA Traffic Control Systems Standards, TS1 1983. - A.7. CONFLICT MONITOR MINIMUM REQUIREMENTS. For actuated controllers of solid state design and construction or actuated controllers utilizing solid state load switches, a separate external signal monitoring device shall be provided to monitor the occurrence of conflicting Green or Walk indications and shall cause the signals to go into flashing operation should such conflicts be sensed. This shall conform to Part 6, NEMA TS11983. #### A.8. FLASHING OF SIGNALS - A.8.1. MINIMUM REQUIREMENTS. Means external to the controller shall be provided to permit the substitution of flashing signal indications for the normal specified interval sequence. The indications to be flashed shall be as specified here or in the included interval sequence chart on the plans. - A.8.1.1. FLASHING RATE. Flashing shall be at the rate of neither less than 50 nor more than 60 flashes per minute with approximately 50% on and 50% off periods. Flashing rate shall not vary so long as the power source remains within the specified limits. - A.8.1.2. CAPACITY. The operation of the flashing circuit shall be accomplished in such a manner as to avoid undue pitting or burning or other damage to load switches at 10 amperes of tungsten lamp load at 120 volts. 60 hertz AC for 50 million times. #### A.8.2. CONTROL OF FLASHER MODE - A.8.2.1. POLICE PANEL SWITCH. Operation of flash mode from police panel shall put operation of controller into Stop Time Mode. - A.8.2.2. INSIDE SWITCH. An "auto off flash" mode switch shall be provided inside cabinet. - A.8.3. FLASHING OF VEHICULAR SIGNALS. Flashing of vehicular signal indications shall be obtained from one or more flashers, each of which is a self-contained device designed to plug into a panel in the controller cabinet. If two flashers provide the flashing, they shall be wired to assure that the flashing of all lenses on the same approach is simultaneous. - A.8.4. FLASHING OF PEDESTRIAN SIGNALS (Pedestrian Clearance). When pedestrian interval timing functions are included, means shall be provided to permit flashing of the DON'T WALK pedestrian signals during the pedestrian clearance interval. - A.8.5. SOLID STATE FLASHER. A solid state flasher with no contact points or moving parts shall be provided. The solid state flasher shall utilize zero point switching. This shall conform to Part 8, NEMA Traffic Control Systems Standards, TS1 1983. #### A.9. MANUAL CONTROL A.9.1. MANUAL CONTROL ENABLE. When specified, manual commands shall place vehicle calls and pedestrian calls (when pedestrian timing is included in the controller's sequence of operation) on all phases, stop controller timing in all intervals except vehicle clearances, and inhibit the operation of the external advance input during vehicle clearance. - A.9.1.1. OPERATION WITHOUT PEDESTRIAN TIMING. When concurrent pedestrian timing is not provided, one actuation of the interval advance input shall advance the controller to Green rest, from which it will immediately select a phase next and advance to the Yellow Vehicle Clearance, subject to the constraints of concurrent timing. - A.9.1.2. OPERATION WITH PEDESTRIAN TIMING. When concurrent pedestrian service is provided, two sequential activations of the interval advance input shall be required to advance through a Green interval, the first actuation shall terminate the WALK interval, and the second shall terminate the GREEN interval including the Pedestrian Clearance Interval. - A.9.1.3. AUTOMATIC TIMING OF VEHICLE CHANGE/CLEARANCE Intervals. All Vehicle Change/Clearance Intervals shall be timed internally by the controller. Actuations of the interval advance input during Vehicle Change/Clearance intervals shall have no effect on the controller. - A.10. STOP TIMING. Suitable input from auxiliary equipment or other external sources shall cause cessation of controller timing during assertion of such input. Upon removal of such input assertion, the interrupted interval, which was timing, shall resume normal
timing. Provisions shall be made to insure that there is no conflict between the various inputs to this function, which would result in a stop time signal for one ring affecting the condition of the other ring. #### A.13. CABINET - A.13.1. BASIC CONSTRUCTION. The controller and all associated equipment shall be provided in weatherproof metal cabinet of cleancut design and appearance. - A.13.1.1. CONSTRUCTION MATERIAL. The cabinet shall be constructed of sheet or cast aluminum. - A.13.1.2. DOOR. A hinged door shall be provided permitting complete access to the interior of cabinet. When closed, the door shall fit closely to gasketing material, making the cabinet weather and dust resistant. The door shall be provided with a strong lock and key. The door shall be designed to be opened only with the standard controller cabinet key currently used by the City of Cedar Rapids. A sample key will be made available to the successful bidder. A.13.1.3. AUXILIARY DOOR. A small hinged and gasketed "door in door" shall be included on the outside of the main controller door. The auxiliary door shall not allow access to the controller, its associated equipment, or exposed electrical terminals but shall allow access to a small switch panel and compartment containing a signal shutdown switch, a flash control switch, and other specified functions. The auxiliary door lock shall be equipped with a strong lock utilizing keys of a different design from those provided for the main cabinet door. The auxiliary door lock shall be designed to be opened only with the standard auxiliary door key used by the City of Cedar Rapids. A sample key will be made available to the successful bidder. - A.13.1.4. DOOR STOP. The controller cabinet door shall be provided with a stop and catch arrangement to hold the door open at angles of both 90 degrees and 180 degrees, ± 10 degrees. - A.13.1.5. MOUNTING SHELVES. The cabinet shall contain strong mounting table(s) or sliding way(s) to accommodate the mounting of the controller and all included auxiliary equipment. The mounting facilities shall permit the controller and/or auxiliary equipment to be withdrawn from the cabinet for inspection or maintenance without breaking any electrical connections or interrupting operation of the controller. - A.13.1.6. MOUNTING SCREWS. Screws used for mounting shelves or other mounting purposes shall not protrude beyond the outside wall of the cabinet. - A.13.1.7. OUTLET AND LAMP. An electrical outlet shall be furnished and located in an accessible place near the front of the cabinet. Each cabinet shall be provided with a light mounted in the cabinet in a manner, which will provide adequate light to service all parts of the cabinet interior during nighttime hours. The light shall be controlled by a toggle switch mounted on the inside control panel. #### A.13.2. SIZE, TYPE AND MOUNTING - A.13.2.1. SIZE. The cabinet shall be of such size to adequately house the controller, all associated electrical devices and hardware, and other auxiliary equipment herein specified. - A.13.2.2. MOUNTING. The cabinet shall be arranged and equipped for concrete base mounting on an aluminum riser. The riser shall provide 15 inch depth and shall be constructed of the same material and finish as the cabinet. Sufficient galvanized anchor bolts, clamps, nuts, hardware, etc., as required for the specified mounting type shall be furnished with each cabinet. - A.13.3. VENTILATION. A thermostatically controlled duct fan unit with a minimum rating of 100 CFM in free air shall be installed in the cabinet to provide forced air ventilation through the cabinet. The fan unit shall be mounted to the inside top of the cabinet and shall be easily removed and replaced without having to dismantle any part of the cabinet or exhaust duct system. The thermostat controlling the fan shall be manually adjustable to turn on between 90 degrees F and 150 degrees F with a differential of not more than 10 degrees F between automatic turnon and turnoff. The fan shall intake air through filtered vents located near the bottom of the cabinet or cabinet door and exhaust it through a weatherproof, screened duct located near the top of the cabinet. Fiberglass type dry filters shall be used to cover the air intakes into the cabinet. These filters shall be easily removed and replaced and be of standard dimensions commercially available. The filters shall be provided with positive retainment on all sides to prevent warping and entry of foreign matter around the edges. # A.13.4. CONNECTING CABLES, WIRING AND PANELS A.13.4.1. CONNECTING CABLES. Electrical connections from the controller (and auxiliary devices when included) to outgoing and incoming circuits shall be made in such a manner that the controller (or auxiliary device) can be replaced with a similar unit, without the necessity of disconnecting and reconnecting the individual wires leading there from. This can be accomplished by means of a multiple plug, a spring connected mounting or approved equivalent arrangement. Correlation shall be made with connecting cable plug and controller jack as described in Subsection 2.2., Section A of this specification. In addition to the above, a mating plug/cable assembly shall be provided for all connectors on the controller (or auxiliary device). - A.13.4.2. PANELS AND WIRING. Each cabinet shall be furnished with suitable, easily accessible wiring panel(s). All panel wiring shall be neatly arranged and firm. - A.13.4.2.1. WIRING TERMINALS. Terminals shall be provided, as a minimum, for the following: - Terminal with N.E.C. cartridge fuse receptacle, fuse, power line switch or magnetic circuit breaker, with integral power line switch, for the incoming power line. - Terminal, unfused, for the neutral side of the incoming power line. - Terminals and bases for signal load switches, and outgoing signal field circuits. - Terminals and bases for signal flasher and outgoing signal field circuits. - Terminals for detector cables. - Terminals for all required auxiliary equipment. - Terminals for all conflict monitor inputs and outputs. - Terminals for all NEMA defined inputs and outputs - Terminals for all inputs and outputs defined by the controller manufacturer which may be in addition to the NEMA defined inputs and outputs. - A.13.4.2.2. CLEARANCE BETWEEN TERMINALS. Adequate electrical clearance shall be provided between terminals. The controller, auxiliary equipment, panel(s), terminals and other accessories shall be so arranged within the cabinet that they will facilitate the entrance and connection of incoming conductors. - A.13.4.2.3. SIGNAL CIRCUIT POLARITY. The outgoing signal circuits shall be of the same polarity as the line side of the power service; the common return of the same polarity as the grounded side of the power service. - A.13.4.2.4. GROUNDING CONDUCTOR BUS. An equipment grounding conductor bus shall be provided in each cabinet. The bus shall be grounded to the cabinet in an approved manner. # A.13.5. FUSING AND SURGE PROTECTION - A.13.5.1. INCOMING AC LINE. Suitable over current protection, utilizing one of the methods described in Subsection A.13.4.2.1, shall be provided. - A.13.5.2. BRANCH AC CIRCUITS. Suitable over current protection devices shall be provided for each of the following AC power line input circuits: - Controller mechanism - Cabinet fan - Conflict monitor - Detector amplifiers - · Flash transfer - A.13.5.3. LIGHT & OUTLET FUSE. A 15 ampere fuse and indicating type of fuse holder, wired in advance of the main circuit breaker for protection of the AC power input circuits to the cabinet light and the convenience duplex receptacle shall be provided. - A.13.5.4. SURGE PROTECTION. High energy transient surge protection shall be provided on the incoming AC power lines in order to minimize potential controller damage. This shall be a gas discharge lightning arrestor 200400 volts. A second such device shall be provided on the AC power line to the controller unit. - A.13.6. PAINTING. The cabinet shall be natural, unfinished aluminum. All mounting attachments shall be natural, unfinished aluminum or finished with two coats of high grade aluminum colored paint. - A.13.7. PLASTIC ENVELOPE. A heavy duty clear plastic envelope shall be securely attached to the inside wall of the cabinet door. Minimum dimensions shall be 9 inches wide x 11 inches deep. - A.14. GUARANTEE. The equipment furnished shall be new, of the latest model fabricated in a first-class workmanlike manner from good quality material. The manufacturer shall replace free of charge to the purchaser any part that fails in any manner by reason of defective material or workmanship within a period of 18 months from date of shipment from the supplier's factory, but not to exceed one year from the date that the equipment was placed in operation after installation. - WIRING DIAGRAMS AND DOCUMENTATION. One documentation A.15. package shall be supplied in each controller cabinet and three additional copies will be supplied for office use. Each package will consist of the following list of items for the cabinet and load facility and for each model of controller, conflict monitor, load switch, and flasher. a) Complete schematic diagram, accurate and current for unit supplied. b) Complete physical description of unit. c) Complete installation procedure for unit. d) Specifications and assembly procedure for any attached or associated equipment required for operation. e) Complete maintenance and troubleshooting procedures. f) Warranty and guarantee on unit, if any. g) Complete performance specifications (both electrical and mechanical) on unit. h) Complete parts list listing full names of vendors and parts not identified by universal part numbers such as JEDEC, RETMA, or EIA, i) Pictorial of components layout on chassis or circuit boards. j) Complete stage-by-stage explanation of circuit theory and operation. #### 4.3 INDUCTIVE LOOP VEHICLE DETECTOR # A. DESIGN
REQUIREMENTS #### A.1. OPERATION A.1.1. GENERAL The detectors shall be designed to operate with loop and lead-in wire combinations having a wide variation in electrical characteristics. The electrical characteristics are a function of the length and width of the loop, the length and type of lead-in wires, and other factors. The detector shall operate with the usual configurations of loops and lead-in wires, standard with the Division, which have a 40 to 700 micro Henry total inductance. The detector shall provide reliable detection and maintain an output indication for a period of not less than three (3) minutes for a vehicle that causes a 0.02% change in the total inductance of the loop and lead-in system as measured at the detector loop input terminals. The detector shall provide operation as above with a loop system having any or all of the following characteristics: - A shunting resistance of 10,000 ohms or greater to a common or circuit ground bus. - A loop system quality factor (Q) of not less than 5.0, when connected to the detector being tested. Q is defined as the ratio of the resonant operating frequency over the half power bandwidth. - A total or equivalent inductance within the range of 40 to 700 micro henries at the detector loop input terminals. A sensitivity adjustment or selector shall be provided to allow selection of a high, medium or low sensitivity adjustment. - A.1.2. LOOP ENERGIZING AND DETECTOR SENSING CIRCUITS. The detector shall provide reliable detection of licensed motor vehicles. The detector shall provide an input (switch closure) only when vehicles are passing or stopped over the loop and shall detect all vehicles passing over the loop at speeds up to 80 miles per hour. - A.1.2.1. TURN ON. When first turned on, while tuning or being tuned, the detector shall provide a continuous output pulse (switch closure), plus a visual indication, in both the presence and pulse modes of operation. On power failure, or loop failure that would cause the inductance to exceed the tuning range, the detector must place a continuous call. - A.1.2.2. FREQUENCY. To prevent mutual interference "crosstalk", the detectors shall be provided with a three position frequency mode switch on the front panel. - A.1.2.3. AUTOMATIC TUNING. The detector shall be designed to be initially tuned to the loop and provide for automatic drift compensation. - A.1.2.4. WEATHER. The operation of the detector shall not be affected by changes in the inductance of the loop caused by environmental changes, such as rain, hail, snow, temperature humidity, nor shall the sensitivity be markedly affected. - A.1.3. ACCURACY. The detector shall be able to detect all licensed vehicles, including motorcycles, accurately. - A.2. DETECTOR OUTPUT. The detector output (switch closure) to the associated traffic control equipment shall be provided by means of a relay. The relay shall have a mechanical life of at least 1,000,000 operations. The contacts shall have a rating of at least 1.0 ampere at 120 volts AC or DC. - A.3. POWER SUPPLY. The detector shall be designed to operate on a 110 commercial 60hertz power line over a voltage range of 100125 volts. The primary of the power supply transformer shall be fused with a 1/4 inch diameter, 1 1/4 inches long, 250 volt fuse of suitable current rating. An - extractor post fuse holder shall be provided. The fuse rating shall be marked by the fuse holder. - A.4. VISUAL INDICATOR. A long life light emitting diode shall be used to provide a visual indication of each vehicle detection. Lamps shall be easily replaceable without the use of tools. The indication must be readily visible in the indirect sunlight. All indicator lights shall have a minimum design life of 20,000 hours at rated voltage unless an ONOFF switch is provided to control the lights. If an ONOFF switch is provided, the design of the lights need be only 1,000 hours at rated voltage. - A.5. DIELECTRIC STRENGTH. The detector shall withstand a dielectric strength test of 1,250 volts, 60 hertz per second, AC applied between the 120 vac line supply circuit and the terminals for the external loop for a period of one minute - A.6. INTERCHANGEABILITY AND DESIGN LIFE. All modules and components of the same type shall be interchangeable. The design life of all components, under conditions of normal operation, shall not be less than five years. - A.7. DELAY CALL. The detector, when specified on the bid form, to have a "Delayed Call" feature, shall be capable of ignoring a vehicle actuation unless it persists for more than a predetermined period of time. The predetermined time shall be adjustable from 0 to 25 second minimum on the front panel. The "Delayed Call" feature shall be inoperative during the green interval for the phase related to the amplifier. ## B. ENCLOSURE - B.1. GENERAL. A dustproof, metal enclosure shall be provided to enclose all electrical parts of the detector. The enclosure shall be designed for placement on a shelf in a weatherproof field cabinet. The detector shall not be position sensitive. - B.2. DETECTOR UNITS. Detector units shall be designed for use with loop combinations (two to four loops) in series or parallel or series-parallel). The detector model shall have a visual indication of a call and will not require external equipment for tuning or adjustment. - B.3. SIZE. A small size enclosure and the ability to stack the enclosures, one on top of another, is desirable. Single detector units shall not be larger than 6 inches by 3 inches by 8 inches deep. - B.4. MARKING. Each detector shall be marked with the manufacturer's name, model, catalog, or type number, and serial number. The electrical input rating (voltage, frequency, and wattage) shall be included in the marking. # C. INPUT/OUTPUT RECEPTACLE C.1. FUNCTION ASSIGNMENT. Input and output connections for the detector shall be made to a type MS3102A181P box receptacle with 10 male contacts. A plastic cover shall be provided on the receptacle. The pin positions of the input/output connector shall be assigned as follows: #### Pin No. Function - A. 120 vac () - B. Output Relay Common - C. 120 VAC (+) - D. Input from Loop - E. Input from Loop - F. Output Relay N.O. - G. Output Relay N.C. - H. Chassis Ground - I. Spare - J. Spare - C.2. PLUG AND CABLE. A plug, type MS3108B with type 181S insert, with 10 female contacts shall be furnished, wired, leads of leads of #18 AWG stranded, color coded wire with 300 volt insulation. A type MS305710 cable clamp and boot shall be provided for strain relief. The leads shall be 5 feet 0 inches in length, the first 16 inches of leads, from the plug, shall be enclosed in cotton braiding. No terminals are required on the leads. ### D. COMPONENTS - D.1. INDUCTORS AND TRANSFORMERS. All inductors and transformers shall have their windings insulated and shall be impregnated to exclude moisture. All wire leads shall be color coded. - D.2. RESISTORS AND CAPACITORS. All resistors and capacitors shall be insulated and shall be marked with their resistance or capacitance value. Resistance and capacitance values may be indicated by the Radio Electronics Television Manufacturer's Association (RETMA) color codes. All electrolytic capacitors shall be marked to indicate polarity and voltage. - D.3. PRINTEDCIRCUIT BOARDS. All printed circuit boards shall be at least 1/16 inch thick and shall be made of glass cloth silicone. NEMA type G10 glass epoxy or equivalent. The conductor material shall be copper, 0.0027 inch thick, having a weight of 2.0 ounces per square foot, with a protective solder coating. All printed circuit board connectors (male and female) shall be gold plated over the copper base. The printed circuit boards shall be securely mounted in such a way as to prevent flexing or bending of the boards, and shall be easily removable for servicing or replacement. D.4. WIRING. All interconnecting wire shall be insulated #22 AWG or larger, suitable for 180 degrees F operation. ### D.5. SOLID STATE CIRCUITRY - D.5.1. COMPONENTS. Transistors, integrated circuits, or semi-conductor diodes shall be used for all amplifying, detecting, rectifying, counting logic, and regulator circuits. No vacuum or gas tubes shall be used except for pilot lights. Transistors, integrated circuits, and diodes shall be marked with their type number and shall be types listed by the Radio Electronics Television Manufacturer's Association (RETMA). No electromechanical timers, synchronous motors, or relays shall be employed, except as specified in Section 1B. - D.5.2. PROPRIETARY PARTS. All electronic and electrical components must be of standard manufacture and available from a source other than the manufacturer of the loop detector unit. - D.6. TEMPERATURE. The temperature of components shall not cause any appreciable reduction in component life when the detector is operated in an ambient temperature from 20 degrees to 180 degrees F. - E. WORKMANSHIP The enclosure and all modules shall be fabricated, assembled, and wired in a workmanlike manner. #### F. DOCUMENTATION - CONTENTS. A documentation package shall be supplied in each controller cabinet for the inductive loop vehicle detectors which shall consist of the following: - a. Complete schematic diagram, accurate and current for unit supplied. - b. Complete physical description of unit. - c. Complete installation procedure for unit. - d. Loop specifications and loop assembly procedure. - e. Complete maintenance and troubleshooting procedures. - f. Warranty and guarantee on unit, if any. - g. Complete performance specifications (both electrical and mechanical) on unit. - h. Complete parts list listing full names of vendors and parts not identified by universal part numbers such as JEDEC, RETMA, or EIA. - i. Pictorial of components layout on chassis or circuit boards. - Complete stage-by-stage explanation of circuit theory and operation. - 2. NUMBER OF COPIES. At least three full documentation packages for each detector
sensing unit model shall be supplied to the Cedar Rapids Traffic Engineering Division. ### 4.5 SIGNAL HEADS # A. GENERAL 1. The signal heads shall be complete with all fittings and brackets for a complete installation. Each signal shall consist of a main body assembly, optical units, necessary screws, wing nuts, eyebolts, etc., and shall be delivered completely assembled. All hardware including hinge pins, wing nuts, eye bolts or latch bolts shall be made of a solid noncorrosive metallic material to prevent seizure or corrosion by the elements. Each signal shall be smooth both inside and outside and shall contain no sharp fins or projections of any kind. The doors and visors shall be flat black. All metal parts shall be painted with one coat of primer and two coats of a high grade Federal Black enamel. All parts of the vehicle signals shall be in compliance with the latest ITE Report on Adjustable Face Vehicle Traffic Control Signal Heads. - 2. The electrical and optical system of the signal head shall be designed to operate on 115 volt, single phase, 60 Hertz alternating current. - 3. All exterior surfaces shall be black. - 4. Main Body Assembly of the signal unit shall consist of one or more polycarbonate sections with integral cast serrations such that when assembled with the proper brackets they may be adjusted in increments and locked securely to prevent moving. The sections shall be designed so that when assembled they interlock with one another. All joints between sections shall be waterproof. The sections shall be held firmly together by locknuts or other means approved by the Engineer. Any open end on an assembled signal face housing shall be plugged with an ornamental cap and gasket. ### 5. Doors and Optical Units - a. The doors shall be made of polycarbonate. Each door shall be of the hinged type and shall be held closed by a wing nut or other approved means. The hinge pins shall be designed so that the doors may be easily removed and reinstalled without the use of special tools. Each door shall have a polycarbonate visor designed to shield each lens. The inside of each visor shall be flat black. - b. The optical system shall be so designed as to prevent any objectionable reflection of sun rays even at times of the day when the sun may shine directly into the lens. When the door of the optical unit is closed, all joints in the assembly between the interior and exterior of the reflector shall be closed against suitable gaskets in order that the units may be dust tight. Between the door and the lens, there shall be a neoprene gasket securely fastened around the outer surface of the lens. Said gasket to be engaged by the rim of the reflector holder when the door is closed to render the union between the reflector holder and the door assembly dust tight. - c. The reflector shall be parabolic in design and made of specular Alzak aluminum. - d. The reflector holder shall be of nonferrous or rust proofed metal and designed to separately support the reflector and socket in proper relation to the lens. The reflector holder shall be hinged to the left-hand side of the signal body when viewed from the front. - On the right-hand side, the reflector holder shall be held in place by a spring catch or other quickly releasable means. - e. Both the hinge device and the spring catch or equivalent shall be of a flexible nature which will permit the reflector holder to be pushed inwardly for at least one sixteenth of an inch and to align itself correctly with the lens when the door of the optical unit is closed and pressed against the rim of the reflector holder. By such means, the joint between the reflector holder and the lens shall be rendered dust tight. It shall not be necessary to remove any screws or nuts in order to swing the reflector holder out of the body section to obtain access to the light socket. - f. The socket shall be arranged with a lamp grip so it will be impossible for the lamp to be loosened by vibration. - 6. The wire entrance fitting shall be made of malleable iron or other approved material equipped with a standard 1.5 inch pipe fitting for attachment to the signal head. It shall be provided with weatherproofing means so that when is attached to the top of the signal a weatherproof assembly results. Positive locking means shall be provided so that the signal cannot loosen from the fitting. The fitting shall be provided with an insulation bushing at the point where wires enter. The fitting shall be provided with self-locking features to prevent the signal head from turning out of directional adjustment in a strong wind. It shall be painted in color to match that of the signal. #### B. VEHICLE SIGNALS In addition to meeting the requirements of Section A., Vehicle Signals shall meet the requirements of the MUTCD and the following requirements: - 1. All indications shall use LED Vehicle Signal Modules. - All lenses shall be prismatic and long range. The lenses shall be 12 inches in diameter. All lenses shall be made of vandal resistant polycarbonate or acrylic plastic free from bubbles and flaws. The lenses shall meet the light transitivity and chromaticity standards established by the ITE Standard for Adjustable Face Vehicle Traffic Control Signal Heads. - 3. The lamp sockets shall have a 3 inch light center length. Each socket shall be provided with one black lead from the socket and one white lead from the shell. Leads shall be of 18 gauge, stranded wire per MILW76A Specifications. - 4. Visors shall be of the tunnel type not less than eight inches in length and shall be designed in a manner such that the visor may be easily installed or removed from the signal head. - 5. A terminal block shall be mounted in the back of the second section of the signal head. The terminal blocks shall be secured at both ends. - 6. Signals shall be shipped completely assembled with tunnel visors attached to the signal door. ### C. PEDESTRIAN SIGNALS In addition to meeting the requirements of Section 1.A., Pedestrian Signals shall meet the design requirements of the MUTCD and the following requirements: - 1.Pedestrian signals shall consist of a single unit, nominal 16 inch x 18 inch, with housing and mounting attachments. The left half shall display a "HAND" symbol and a "WALKING PERSON" symbol. The right half shall display clearance interval countdown numerals. The signals shall operate with LED lamps that meet or exceed ITE PTCSI-2 LED Pedestrian Signal Specifications. - 2. The lenses shall be made of vandal resistant polycarbonate or acrylic plastic. Unless otherwise specified on the Plan Documents, the symbols on these lenses shall be at least 9 inches high and shall be designed to produce a maximum legibility both day and night. The "HAND" symbol shall be Lunar White and the "WALKING PERSON" symbol and numerals shall be Portland Orange. The background or field around both messages shall be black. #### D. MOUNTING ASSEMBLIES - Mounting assemblies shall consist of 1.5 inch standard pipe and fittings. All members shall be so fabricated such that they provide plumb, symmetrical arrangement, and securely fabricated assemblies. Construction shall be such that all conductors are concealed within assemblies. Cable guides shall be used to support and protect conductors entering assembly through poles. All threads shall be coated with rust preventive paint during assembly. - Support brackets, trunnions, and fittings shall be made of cast aluminum, steel, or cast iron. Bracket parts except for stainless steel parts shall be given one prime coat of metal primer and two coats of high quality Black exterior enamel. - 3. Mounting assemblies shall be watertight and all open segments of the fittings shall be plugged with an ornamental plug and a gasket. - 4. Mast arm mounting brackets shall be furnished with a completely adjustable stainless steel strap around arm, malleable clamp casting, vertical support tube, top and bottom signal head support with set screws, bolts, hole with rubber grommet in mast arm, and all incidentals necessary for complete installation. - 5. Brackets for mounting the signal head on top of a pedestal shall provide support for both the top and bottom of the signal head. - E. Each signal shall be packed or crated separate and complete by itself. The outside of each package or crate shall clearly show the manufacture, type, catalog number, City purchase order number and project. Mounting attachments may be shipped separate from the signals, but the boxes or crates shall be marked clearly with the same information as the signals. Mounting attachments of different types shall not be mixed in one box or crate. # 4.6 TRAFFIC SIGNAL LAMPS #### A. LED VEHICLE SIGNAL MODULES LED Vehicle Traffic Signal Modules shall comply with the latest revision of the "Equipment and Material Standards of the Institute of Transportation Engineers: Chapter 2a: VTCSH Part 2: Light Emitting Diode (LED) Vehicle Signal Modules (Interim)" ### Note the following: - "Section 5.5 Dimming (Optional)" is not required. - "Section 5.8 Failed State Impedance (Optional)" is required. - 2. Compliance with all other sections of this standard is required. #### 4.7 BACKPLATES - A. Backplates shall be 0.125 inch thick thermoplastic and provide a minimum of a 5 inch black field around the assembly. Corners of the backplates shall be rounded with a 2.5 inch radius. - B. Backplates shall be supplied with attaching bolts or screws in sufficient quantity to securely hold the backplates to the signal heads. #### 4.8 ALUMINUM TRAFFIC SIGNAL PEDESTAL - A. The pedestal shaft shall be fabricated of aluminum tubing with a wall thickness of not less than 0.125 inches. Shaft shall have a brushed aluminum finish. - B. The shaft shall be attached to a square cast aluminum base with a handhole. The size of the handhole shall be at least 8.5 inches by 8.5 inches and equipped with a cover, which can be securely fastened to the base with the use of simple tools. A
lug shall be provided near the handhole to permit connection of a #6 AWG grounding wire. - C. The length of the pedestal, from the bottom of the base to the top of the shaft, shall be as noted in the Plans. The top of the shaft shall have an outer diameter of 4.5 inches. - D. Pedestals shall be equipped with all necessary hardware, shims and anchor bolts to provide for a complete installation without additional parts. - E. The pedestal base shall be designed to mount on four 0.75 inch anchor bolts spaced evenly around a 12.75 inch diameter bolt circle. ### 4.9 PEDESTRIAN PUSH BUTTON DETECTORS - A. The pushbutton shall provide a minimum 2 inch diameter aluminum ADA compliant plunger, pressure activated so as to require no more than 3.5 lbs force to activate. LED light and audible tones shall confirm activation. The light and tones shall be momentary (not latched) and require no additional power source. - B. The body material shall be aluminum, and powder coated black. The entire - assembly shall be weather tight and secure against electrical shock. A saddle shall be provided if necessary to secure a rigid installation and neat fit. - C. The Contractor shall furnish and install signs with each pushbutton, identifying the associated street crossing. The signs shall be 9 inch x 12 inch, MUTCD Pedestrian Traffic Signal Signs, R104b. Combination pushbutton/ sign assemblies are not acceptable. - D. The pushbutton shall be located on the pole so the arrow on the accompanying sign directs pedestrians to the appropriate crosswalk. ### 4.10 VIDEO DETECTION SYSTEM - A. This specification sets forth the minimum requirements for a Video Detection System that monitors vehicles on a roadway via processing of video images and provides detector outputs to a traffic controller or similar device. All work, equipment and materials to provide a properly functioning Video Detection System is included. - B. The system shall be composed of these principal items: the cameras, the field communications link between the camera(s) and the processor unit(s) along with any PC, video monitor or associated equipment required to set up the system. The equipment shall include camera mounting brackets and standard detector rack(s) with power supply. - C. The configuration will consist of the following primary components: mounted cameras, rack mounted detector cards, processor, field video monitor, software and all associated equipment required to set up and operate in a field environment. Mounting positions and heights are as identified in the Plans, unless otherwise directed by the Engineer. - D. Material provided by the Contractor shall include two sets of operations manuals and one service manual with schematics and parts list for out of–warranty repairs. ### E. Detection - 1. The system shall provide real-time vehicle detection comparable to properly operating inductive loops. - The system software shall be able to detect either approaching of departing vehicles in multiple traffic lanes. - 3. A minimum of 24 detector outputs for a multiple camera processor and 6 detector outputs for a single camera processor shall be available. - 4. A minimum of 16 detection zones per camera shall be available that are user defined through interactive graphics. - 5. The system shall compensate for minor camera movement (up to 2% of the field of view at 400 feet) without falsely detecting vehicles. The camera movement shall be measured on the unprocessed video input to the processor units. ### F. Detection Zones - 1. The system shall provide flexible detection placement anywhere within the combined field of view of the image sensors. - Placement of detection zones shall be by means of a graphical interface using the video image of the roadway. The monitor shall show images of the detection zones superimposed on the video image of traffic. - 3. Detection zones shall be capable of being sized, shaped and overlapped to provide optimal road coverage and detection. - Detection zones shall be provided that are sensitive to direction of travel. The direction to be detected by each zone shall be user programmable. - 5. When a configuration has been created, the system shall provide a graphic display on the monitor. When a vehicle occupies a detection zone, the zone on the live video shall indicate the presence of a vehicle. - 6. Detection zones shall have the capability of implementing logical functions (including AND and OR), counting, and delay and extension timing. These logical functions may be excluded in the provisions are made to bring each detector separately into the controller and the controller can provide these functions. - 7. It shall be possible to save detector configurations on disk, to download configurations to the processor, and to retrieve the configuration that is currently running in the processor. - 8. The user shall be able to redefine previously defined detection zones and configurations using a mouse or keyboard. - Equipment failure, either camera or processor, shall result in constant vehicle call on affected detection zones. ## 4.11 WIRELESS VEHICLE DETECTION SYSTEM - A. This specification sets forth the minimum requirements for a Wireless Vehicle Detection System that provides the required advanced vehicle detection as indicated in the plans. All work, equipment and materials to provide a properly functioning Wireless Vehicle Detection System is included. - B. The system shall be comprised of these principal items: in pavement (flush to surface) wireless sensor unit at locations where detection is required, a base station at each traffic signal controller, any required amplifier units to ensure the strength of the wireless signal at the base station, along with any associated equipment required to set up the system. The equipment shall include any required mounting brackets and cable both internal and external to the traffic signal cabinet. The system shall also include any modifications to the traffic signal controller cabinet(s) necessary to provide the wireless vehicle detection. - C. The in-pavement wireless sensor unit and the amplifier unit shall be battery powered. - D. The Wireless Vehicle Detection System shall comply with FCC Part 15, UL, and Public Safety (Part 70). # 4.12 ETHERNET COMMUNICATIONS SYSTEM A. This specification sets forth the minimum requirements for an Ethernet based traffic signal interconnect and communications system. All work, equipment, and materials to provide a properly functioning Ethernet communications system is included. ### The fiber optic Ethernet communications equipment shall include: - Heavy Duty Field Switch shall be GarrettCom Magnum 6KQ - Serial to FSK Converter shall be GarrettCom Magnum 100 Mb Fiber Media Converter - Device server shall be 4-port, premium rated GarrettCom Magnum for Outdoors 10/100. - Ethernet Access Device (EAD) shall be Actelis ML620 - Edge switches shall be ES42 PD as manufactured by GarrettCom - B. The system shall be primarily fiber optic cable based, but may include interface equipment to change from fiber optic communication to twisted pair copper wire communication as shown in the plans. The system shall also include interface equipment and cabling for CAT-5 communications. - C. All equipment, terminations, connectors, terminal blocks, and any other hardware to construct the system shall be designed for outdoor use in typical traffic signal system conditions. All equipment shall include mounting brackets to secure the equipment in the cabinet. #### 4.13 SERVICE PEDESTAL AND BACK-TO-BACK BATTERY BACK-UP SYSTEM If set forth in the Plans, the Contractor shall supply and install a combination battery back-up, electrical service with meter and lighting controller. Additional features must include transfer switch for generator power (lockage in use), metered disconnect for traffic signal, and un-metered disconnect for street lighting. Dedicated conduits shall connect the unit with the fiber hub cabinet, the adjacent signal pole base (for street lighting) and the designated quazite handhole (for traffic signal cabinet). The service pedestal shall be part of the continuously grounded system discussed in this specification. - A. The underground service distribution and control pedestals shall be constructed of anodized aluminum. The system shall provide uninterrupted, conditioned power (true pure sine wave) for the Traffic Controller Cabinet and fiber hub cabinet to eliminate Black-outs, Brown-outs, and Spikes on the signals and the control equipment. A typical intersection with a power outage, will operate as normal for 2 hours of run time and 8 hours of flash. Upon normal power resumption, the system shall recharge to 95% within 6 hours. Batteries shall be quick, hot swap replacement with no exposed terminals. The system shall monitor and record transient events and self-test the batteries, and provide local and remote data. - B. Service pedestal will include: - Small and low profile with no exposed fasteners. - Fabricated from anodized aluminum. - Durable all welded construction. - Vandal proof doors with hasp stress rated to 2,000 lbs. - The cabinet shall be factory wired and tested before shipment. - UL approved copper cable busing and control wiring. - Meets EUSERC requirements. - Shall provide both unmetered and metered circuits up to 200 Amps. - C. Cabinets and power specifications: - Dual Cabinets external dimensions: 20.5 inch wide x 50 feet high x 19.25 inches deep, excluding door handles. - Cabinet shall be fabricated from 118 inches anodized aluminum. - Internal parts shall be fabricated from 14 gauge cold rolled steel. - Cabinet shall be all welded construction with welding materials specifically designed for the material used. - All fasteners, latches, and hardware shall be of stainless steel and all hinges shall be continuous piano style. - There shall be no exposed nuts, bolts, screws, rivets, or other fasteners on the exterior. - Removable backpan shall be
mounted on 4 welded 1/4 inch studs. - Cabinet doors shall have 2,000 lb. stress rated hasp, welded to the cabinet and door. - Cabinets shall have fully framed side hinged outer doors with swagged close tolerance sides for flush fit with top drip lip and closed cell neoprene flange compressed gaskets. - Base mounting detail shall be identical to existing cabinets for emergency replacement. # Deadfront Safety Door - Distribution and control panel shall have a hinged deadfront panel with 1/4 turn latch and knurled knobs. - Deadfront shall be hinged on the same side as the front door and shall open a minimum of 120°. ### Power Distribution Panel - Main breakers shall be 1 pole, 2 pole, 3 pole, or 4 pole, as appropriate for this installation, and in accordance with the local utility. - Provide separate metered main, unmetered lighting main, and disconnects as required. - There shall be no plug-in circuit breakers. Circuit breakers shall be industrial grade. - All branch circuit breakers shall be installed in a vertical position, handle up for 'On', handle down for 'Off'. - All busing shall be U.L. approved copper THHN cable busing, fully rated. ### Battery Back-Up System - Vandal-resistant construction. - 1400 VA, 950 Watts, Industry Standard run time 3 hours all LED Intersection. - Typical Intersection (700 watts) run time 2 hours, with 6-8 hours of selected flash. - Inverter Tit-out housing for easy maintenance. - No tools required for inverter 110 contact connections and simple slide-in installation, weights 28 lbs. - Full power bypass and isolation switches. - Transient voltage protection. - Power Analyzer with triple redundant Bypass - Conditioned power - o Power Conflict Monitor with isolation and transfer module - Watchdog timer with redundant 5 ms delay and hard transfer to utility power - Smart slot communications I/O module. - RS 232 and USB ports for local or remote monitoring. - Intelligent battery management system with microprocessor controlled smart battery charger, automatic self test, cell guard for longer life and faster recharge times. - 24V 18AH batteris AGM/VRLA (absorbed glass mat/valve regulated lead acid), compact, lightweight only 25 lbs. - Seismically rated fixed position framed battery trays. - Quick swap hot battery replacement system. - Heavy duty smart safety battery connection system, 30A silver plated plugs. - Battery Manufacturer's 2 year warranty. # **Control Compartment** - All components shall match existing components in use for maintenance of spare parts and known reliability. - The cabinet shall be completely prewired in the factory. - All control wiring is 19 strand #14 AWG THHN. - All terminals shall be permanently labeled. # Nameplates and Drawings • The function of circuit breakers, switches and other components as required shall be identified by laminated engraved plastic nameplates fastened with minimum of two 1/4 inch, #4-40 machine screws. # 4.14 FIBER OPTIC DATA HUB CABINET (Caltrans 332 Style) ## The cabinet shall include: - Two door (66 inches H x 24 inches W x 30inches D), heavy duty 0.125 inch thick aluminum cabinet. - Meets all Caltrans TEES requirements. - Base mounted with 4- 3/4 inch x 16 inch anchor bolts. - Three point locking system with Pelco locks and #2 keying standard. - Police panel with standard skeleton key. - Anodized finish. - Stainless steel door handles with padlocking capability. - Two-position door stops on top and bottom of front and rear doors. - Removable self-standing rack assembly. - 100 CFM fan with thermostatic control. - Fluorescent light. ### 4.15 PAN, TILT, ZOOM (PTZ) CAMERA - A. Weather Resistant Dome Network Camera. The PTZ Camera shall have the following features: - High sensitivity with Day/Night function: 0.5 lux (Color) at F1.4 (Wide), 0.04 lux (B/W) at F1.4 (Wide). IR cut filter switches on/off to enhance the - sensitivity in B/W mode. - 2 Adaptive Digital Noise Reduction: Integration of 2D-DNR and 3DDNR ensures noise reduction in various conditions. - 3 Electronic sensitivity enhancement: Auto (Up to 32x) / OFF - 4 30x zoom lens: 3.8 ~ 114 mm (approx. 300x with digital zoom) - 5 Pan/Tilt speed of max. 400°/s at preset mode and 0.065°/s super fine control at manual mode - Auto tracking: The camera automatically pans and tilts to follow a moving subject and keep it in the center of the image. - 7 Various I/O terminals: ALARM IN 1 / BW IN, ALARM IN 2 /ALARM OUT, ALARM IN 3 / AUX OUT - 8 Alarm sources include Terminal 1 ~ 3, VMD. Alarm actions include Preset positions 1 ~ 256, PATROL 1 ~ 4, SD memory recording, FTP image transfer, E-mail notification, Indication on browser, Terminal output, protocol output and Auto track. - 9 Auto Image Stabilizer - 10 Camera title display: 16 alphanumerics OSD and 20 alphanumerics on the browser - Digital Slip-ring Transmission: The high speed digital video signal travels through the compact slip-ring without any DA/AD conversion process preventing image quality loss. - 12 MPEG-4/JPEG digital signal output at VGA image size with up to 30 ips - 13 MPEG-4 and JPEG dual stream output for simultaneous real time monitoring and high resolution recording - Progressive output with motion adaptive interlace/progressive conversion allows every image to be clear even when the object is moving. - 15 PTZ control can be made on the user-friendly GUI with 16 speeds an/tilt and new "Drag and Zoom" operation enabling finer control. 256 speeds available for system with WV-CU950 system controller. - 16 360° map shot: 8 thumbnail images at 45° intervals make it simple to direct the camera by clicking on a thumbnail. - Multiscreen: Image from 16 cameras can be displayed in 4 different Quad screens or 16-screen (JPEG only). - FTP client function enables periodic image data transfer or transfer upon alarm. - 19 Alarm notification via e-mail - Full duplex 2-way audio allows interactive communication between camera site and monitoring site. - Alarm log, Manual REC log, FTP error log saved in the SD memory card is displayed on the browser GUI and can be downloaded to the client PC. Playback or Image data download through the log is also available. - 22 Internet mode: MPEG-4 images can be transmitted over HTTP protocol. - 23 SD memory card slot for Manual recording, Alarm recording and Backup upon network failure - 24 Scheduling function for Alarm / VMD / Access permission, Preset position call and Position refresh - 25 IP66 rated water and dust resistant. Compatible with IEC60529 measurement standard. - Built-in fan/heater/sun shield for temperature changes of -40° C $\sim +50^{\circ}$ C $(-40^{\circ}$ F $\sim +122^{\circ}$ F) - 27 Encoder [-40 to +125°F] in the camera head (Only for cameras at locations specified in the plans otherwise this feature is not required) # B. Camera / operating system specifications: Lens Focal Length 3.8 mm ~ 114 mm, 30x zoom, 300x with 10x digital zoom - Zoom Speed Manual: Approx. 6 sec. (Wide ~ Tele) Preset: Approx. 2 sec. (Wide ~ Tele) - Angular Field of View H: 1.9° (Tele) ~ 52.0° (Wide), V: 1.4° (Tele) ~ 40.0° (Wide) - Maximum Aperture Ratio 1 : 1.4 (Wide) ~ 3.7 (Tele) - Focusing Range 1.5 m ~ ∞ - Aperture Range F1.4 ~ 22, Close - Pan and Panning Range 360° endless - Tilt Panning Speed Manual: Approx. 0.065°/s ~ 120°/s, Up to 256 steps (depending on the controller). Preset: up to approx. 400°/s - Tilting Range –5° ~ 185° (upward-level-downward) Tilting angle limit: 0° / –1° / – 2° / –3° / –4° / –5° - Tilting Speed Manual: Approx.0.065°/s ~ 120°/s, Up to 256 steps (depending on the controller). Preset: up to approx. 400°/s - Proportional Pan/Tilt Control - Number of Preset Positions: 256 - Auto Mode OFF / preset sequence / auto pan / auto track / patrol - Auto Track Standard Auto track - Patrol 1 / 2 / 3 / 4 - Image Hold ON / OFF - Digital Flip Yes - PTZ Position Display ON / OFF - Map Shot 360° map shot / preset map shot - Browser Camera Control Pan/Tilt (16 steps), Zoom, Focus, Click centering, Drag zoom, GUI Iris, Preset position call and program, Auto mode Display Mode Image from 16 cameras can be displayed in 4 different Quad screens or 16screen (JPEG only). - Camera Title Up to 20 alphanumeric characters - SD Memory Data Download Images recorded in the SD memory card can be downloaded. - Clock Display Time: 12H / 24H, Date: 5 formats on the browser, Summer time (Manual) - Alarm Control Reset - Includes IP Setup software, viewer software, network operating instruction and GUI / Setup Menu English - System Log Alarm log, Manual REC log, FTP error log (SD memory required)